Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (11): 2099-2110.doi: 10.3724/SP.J.1006.2021.04245
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LEI Wei1,2(), WANG Rui-Li1, WANG Liu-Yan1, YUAN Fang1,2, MENG Li-Jiao1,2, XING Ming-Li1,2, XU Lu1,2, TANG Zhang-Lin1,2, LI Jia-Na1,2, CUI Cui1,*(), ZHOU Qing-Yuan1,2,*()
[1] | 刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社, 1987. pp 316-320. |
Liu H L. Practical Rape Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 316-320(in Chinese). | |
[2] | 涂金星, 傅廷栋. 油菜品质育种现状及展望. 植物遗传资源学报, 2001, 2(4):53-58. |
Tu J X, Fu T D. The status and prospects of quality breeding of rape. J Plant Genet Resour, 2001, 2(4):53-58 (in Chinese with English abstract). | |
[3] |
Clarke J M, Simpson G M. Influence of irrigation and seeding rates on yield and yield components of Brassica napus L. cv. tower. Can J Plant Sci, 1978, 58: 731-737.
doi: 10.4141/cjps78-108 |
[4] |
Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics, 1999, 153: 949-964.
pmid: 10511570 |
[5] |
Lionneton E, Aubert G, Ochatt S, Merah O. Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet, 2004, 109: 792-799.
pmid: 15340689 |
[6] |
Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft L, Zhao J Y, Meng J L. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus L. Genetics, 2009, 182: 851-861.
doi: 10.1534/genetics.109.101642 |
[7] | 惠飞虎, 石剑飞, 孙家刚, 冷锁虎, 唐瑶, 左青松. 油菜的源库关系研究: III. 油菜库容变化对粒重的影响. 江苏农业学报, 2006, 22: 109-112. |
Hui F H, Shi J F, Sun J G, Leng S H, Tang Y, Zuo Q S. Studies on source and sink of rapeseed: III. Effect of sink change on seed weight in rapeseed. J Jiangsu Agric Sci, 2006, 22: 109-112 (in Chinese with English abstract). | |
[8] | 易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006, 32: 676-682. |
Yi B, Chen W, Ma C Z, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin, 2006, 32: 676-682 (in Chinese with English abstract). | |
[9] |
Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet, 2006, 113: 549-561.
pmid: 16767447 |
[10] |
Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006, 113: 597-609.
doi: 10.1007/s00122-006-0324-0 |
[11] |
Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics, 2008, 179: 1547-1558.
doi: 10.1534/genetics.108.089680 |
[12] |
Fan C C, Cai G Q, Qin J, Li Q Y, Yang M G, Wu J Z, Fu T D, Liu K D, Zhou Y M. Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus L. Theor Appl Genet, 2010, 121: 1289-1301.
doi: 10.1007/s00122-010-1388-4 |
[13] |
Yang P, Shu C, Chen L, Xu J, Wu J, Liu K. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 125: 285-296.
doi: 10.1007/s00122-012-1833-7 pmid: 22406980 |
[14] |
Qin L P, Mao L, Sun C M, Pu Y Y, Fu T D, Ma C Z, Shen J X, Tu J X, Yi B, Wu J. Interpreting the genetic basis of silique traits in Brassica napus L. using a joint QTL network. Plant Breed, 2014, 133: 52-60.
doi: 10.1111/pbr.2014.133.issue-1 |
[15] |
Li F, Chen B Y, Xu K, Wu J F, Song W L, Bancroft I, Harper A L, Trict M, Liu S Y, Gao G Z, Wang N A, Yan G X, Qiao J W, Li J, Li H, Xiao X, Zhang T Y, Wu X M. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res, 2014, 21: 355-367.
doi: 10.1093/dnares/dsu002 |
[16] | 荐红举, 魏丽娟, 李超, 唐章林, 李加纳, 刘列钊. 基于SNP遗传图谱定位甘蓝型油菜千粒重QTL位点. 中国农业科学, 2014, 47: 3953-3961. |
Jian H J, Wei L J, Li C, Tang Z L, Li J N, Liu L Z. QTL mapping of 1000-seed weight in Brassica napus L. by using the high density SNP genetic map. Sci Agric Sin, 2014, 47: 3953-3961 (in Chinese with English abstract). | |
[17] | 张晓芳, 张玉良. 我国小麦籽粒容重的研究. 作物品种资源, 1997, 12(2):24-25. |
Zhang X F, Zhang Y L. Studies on the seed density of wheat in our country. Crop Var Res, 1997, 12(2):24-25 (in Chinese with English abstract). | |
[18] | 刘保华, 马永安, 赵勇, 田纪春, 海燕, 杨学举. 普通小麦籽粒比重的QTL分析. 河北农业大学学报, 2013, 36(5):1-5. |
Liu B H, Ma Y A, Zhao Y, Tian J C, Hai Y, Yang X J. QTLs mapping for grain specific gravity in common wheat. J Agric Univ Hebei, 2013, 36(5):1-5 (in Chinese with English abstract). | |
[19] | 王霖, 冯维营, 黄玲, 邵敏敏, 孙雷明, 王洪刚. 小麦容重QTL定位. 山东农业科学, 2014, 46(4):24-27. |
Wang L, Feng W Y, Huang L, Shao M M, Sun L M, Wang H G. QTL mapping for wheat test weight. Shandong Agric Sci, 2014, 46(4):24-27 (in Chinese with English abstract). | |
[20] | 车海先, 李海玉. 玉米容重影响因素浅析. 粮食与食品工业, 2011, 18(1):56-58. |
Che H X, Li H Y. Analysis of influencing factors on maize test weight. Cereal Food Ind, 2011, 18(1):56-58 (in Chinese with English abstract). | |
[21] |
Ding J Q, Ma J L, Zhang C R, Dong H F, Xi Z Y, Xia Z L, Wu J Y. QTL mapping for test weight by using F2:3 population in maize. J Genet, 2011, 90: 75-80.
doi: 10.1007/s12041-011-0036-3 |
[22] | 许理文, 段民孝, 田红丽, 宋伟, 王凤格, 赵久然, 刘保林, 王守才. 基于SNP标记的玉米容重QTL分析. 玉米科学, 2015, 23(5):21-25. |
Xu L W, Duan M X, Tian H L, Song W, Wang F G, Zhao J R, Liu B L, Wang S C. QTL Identification for test weight based on SNP mapping in maize. J Maize Sci, 2015, 23(5):21-25 (in Chinese with English abstract). | |
[23] | 郭晋杰, 韩新桐, 张静, 陈景堂. 基于高密度遗传连锁图谱定位玉米子粒容重及相关性状QTL. 玉米科学, 2018, 26(6):27-32. |
Guo J J, Han X T, Zhang J, Chen J T. High-density genetic linkage map construction and QTL mapping for kernel test weight and related traits in maize. J Maize Sci, 2018, 26(6):27-32 (in Chinese with English abstract). | |
[24] | 刘文博. 大豆籽粒容重与种子萌发的相关性研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2018. |
Liu W B. Correlation between Bulk Density and Seed Germination. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018 (in Chinese with English abstract). | |
[25] | Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Zhang J F, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B. Genome-wide association study provides Insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016, 7: 1102-1114. |
[26] |
Chen L L, Wan H P, Qian J L, Guo J B, Sun C M, Wen J, Yi B, Ma C Z, Tu J X, Song L Q, Fu T D, Shen J X. Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.). Front Plant Sci, 2018, 9: 375-389.
doi: 10.3389/fpls.2018.00375 |
[27] | Xu L P, Hu K N, Zhang Z Q, Guan C Y, Chen S, Hua W, Li J N, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res, 2016, 23: 43-52. |
[28] |
Liu S, Fan C C, Li J N, Cai G Q, Yang Q Y, Wu J, Yi X Q, Zhang C Y, Zhou Y M. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus L. Theor Appl Genet, 2016, 129: 1203-1215.
doi: 10.1007/s00122-016-2697-z |
[29] |
Hatzig S V, Frisch M, Breuer F, Nesi N, Ducourmau S, Wagner M H, Leckband G, Abbdadi A, Snowdon R J. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus L. Front Plant Sci, 2015, 6: 221-233.
doi: 10.3389/fpls.2015.00221 pmid: 25914704 |
[30] | 韩光明, 蓝家样, 陈全求, 张胜昔, 李国荣. 一种利用ImageJ软件对棉花种子的计数方法. 棉花科学, 2019, 41(2):2-5. |
Han G M, Lan J Y, Chen Q Q, Zhang S X, Li G R. A method for counting cotton seeds using ImageJ software. Cotton Sci, 2019, 41(2):2-5 (in Chinese with English abstract). | |
[31] |
Qu C M, Li J N, Fu F Y, Zhao H Y, Lu K, Wei L J, Xu X F, Liang Y, Li S M, Wang R, Li J N. Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics, 2017, 18: 232-248.
doi: 10.1186/s12864-017-3607-8 |
[32] |
Wan H P, Chen L L, Guo J B, Li Q, Wen J, Yi B, Ma C Z, Tu J X, Fu T D, Shen J X. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front Plant Sci, 2017, 8: 593-607.
doi: 10.3389/fpls.2017.00593 |
[33] |
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829 |
[34] |
Barrett J, Fry B, Maller J, Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263-265.
pmid: 15297300 |
[35] |
Jiang W, Huang H, Hu Y, Zhu S, Wang Z, Lin W. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol, 2013, 162: 1965-1977.
doi: 10.1104/pp.113.217703 |
[36] |
Footitt S, Cornah J E, Pracharoenwattan A I, Bryce J H, Smith S M. The Arabidopsis 3-ketoacyl-CoA thiolase-2 (kat2-1) mutant exhibits increased flowering but reduced reproductive success. J Exp Bot, 2007, 58: 2959-2968.
pmid: 17728299 |
[37] |
Zhu T, Moschou P N, Alvarezi J M, Sohlberg J J, Von A S. Wuschel-related homeobox 2 is important for protoderm and suspensor development in the gymnosperm norway spruce. BMC Plant Biol, 2016, 16: 19-33.
doi: 10.1186/s12870-016-0706-7 |
[38] |
Garcia D, Fitz G J N, Berger F. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell, 2005, 17: 52-60.
doi: 10.1105/tpc.104.027136 |
[39] | Lasserre E, Jobet E, Llauro C, Delseny M. AtERF38 (At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization. Plant Physiol Biochem, 2008, 46: 1051-1061. |
[40] |
Kushwaha H, Jillo K W, Singhl V K, Kumar A, Yadav D. Assessment of genetic diversity among cereals and millets based on PCR amplification using Dof (DNA binding with One Finger) transcription factor gene-specific primers. Plant Syst Evol, 2015, 301: 833-840.
doi: 10.1007/s00606-014-1095-8 |
[41] |
Gupta S, Pathak R K, Gupta S M, Gaur V S, Singh N K, Kumar A. Identification and molecular characterization of transcription factor gene family preferentially expressed in developing spikes of Eleusine coracana L. 3 Biotech, 2018, 8: 82.
doi: 10.1007/s13205-017-1068-z |
[42] |
Shani Z, Dekel M, Tsabary G, Shoseyov O. Cloning and characterization of elongation specific endo-1,4-[beta]-glucanase (cel1) from Arabidopsis thaliana. Plant Mol Biol, 1997, 34: 837-842.
pmid: 9290636 |
[43] | Li N, Li Y. Ubiquitin-mediated control of seed size in plants. Front Plant Sci, 2014, 5: 332-337 |
[44] |
Gao M J, Lydiate D J, Li X, Lui H, Gjetvaj B, Hegedus D D, Rozwadowski K. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell, 2009, 21: 54-71.
doi: 10.1105/tpc.108.061309 |
[45] |
Schruff M, Spielman M, Tiwari S, Adams S, Fenby N, Scott R. The anxin response factor 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006, 133: 251-261.
pmid: 16339187 |
[46] | Salas-Munoz S, Rodriguez-Hernandez A A, Ortega-Amaro M A, Salazar-Badillo F B, Jimenez-Bremont J F. Arabidopsis AtDjA3 null mutant shows increased sensitivity to abscisic acid, salt, and osmotic stress in germination and post-germination stages. Front Plant Sci, 2016, 7: 220-230. |
[47] |
Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858.
pmid: 17665168 |
[48] |
Brinton J, Simmonds J, Uauy C. Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat. BMC Plant Biol, 2018, 18: 22-28.
doi: 10.1186/s12870-018-1241-5 pmid: 29370763 |
[49] |
Khan S U, Yang M J, Liu S, Zhang K, Khan M H U, Zhai Y G, Olalekan A, Fan C C, Zhou Y M. Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Ind Crops Prod, 2019, 142: 111877.
doi: 10.1016/j.indcrop.2019.111877 |
[50] | 孙程明, 陈锋, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析. 作物学报, 2020, 46: 147-153. |
Sun C M, Chen F, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.). Acta Agron Sin, 2020, 46: 147-153(in Chinese with English abstract). | |
[51] | 任义英, 崔翠, 王倩, 唐章林, 徐新福, 林呐, 殷家明, 李加纳, 周清元. 油菜主花序角果密度及其相关性状的全基因组关联分析. 中国农业科学, 2018, 51: 1020-1033. |
Ren Y Y, Cui C, Wang Q, Tang Z L, Xu X F, Lin N, Yin J M, Li J N, Zhou Q Y. Genome-wide association analysis of silique density on racemes and its component traits in Brassica napus L. Sci Agric Sin, 2018, 51: 1020-1033 (in Chinese with English abstract). | |
[52] | 周庆红, 周灿, 郑伟, 付东辉. 甘蓝型油菜角果长度全基因组关联分析. 中国农业科学, 2017, 50: 228-239. |
Zhou Q H, Zhou C, Zheng W, Fu D H. Genome wide association analysis of silique length in Brassica napus L. Sci Agric Sin, 2017, 50: 228-239 (in Chinese with English abstract). | |
[53] |
Li N, Li Y. Signaling pathways of seed size control in plants. Curr Opin Plant Biol, 2016, 33: 23-32.
doi: 10.1016/j.pbi.2016.05.008 |
[54] | 张雪晶, 江文波, 庞永珍. 植物种子大小调控机制的研究进展. 植物生理学报, 2016, 52: 998-1010. |
Zhang X J, Jiang W B, Pang Y Z. Advances in the regulation mechanism of plant seed size. J Plant Physiol, 2016, 52: 998-1010 (in Chinese with English abstract) |
[1] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[2] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[3] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
[4] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[5] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[6] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[7] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[8] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[9] | GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172. |
[10] | WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress [J]. Acta Agronomica Sinica, 2020, 46(6): 832-843. |
[11] | LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800. |
[12] | HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646. |
[13] | Cun-Min QU,Guo-Qiang MA,Mei-Chen ZHU,Xiao-Hu HUANG,Le-Dong JIA,Shu-Xian WANG,Hui-Yan ZHAO,Xin-Fu XU,Kun LU,Jia-Na LI,Rui WANG. Genome-wide association of roots, hypocotyls and fresh weight at germination stage under as stress in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 175-187. |
[14] | Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821. |
[15] | Tao FENG,Chun-Yun GUAN. Cloning and Characterization of Brassinazole-resistant (BnaBZR1 and BnaBES1) CDS from Brassica napus L. [J]. Acta Agronomica Sinica, 2018, 44(12): 1793-1801. |
|