Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1758-1768.doi: 10.3724/SP.J.1006.2023.24197

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.)

WAN Yi-Man(), XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai*()   

  1. School of Life Science, Shandong Agricultural University, Tai’an 271000, Shandong, China
  • Received:2022-08-26 Accepted:2022-11-25 Online:2023-07-12 Published:2022-12-06
  • Contact: *E-mail: cawu@sdau.edu.cn E-mail:wanyiman123@163.com;cawu@sdau.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2018YFD1000704);The National Key Research and Development Program of China(2018YFD100070);The Key Research and Development Program (Agricultural Fine Seed Project) of Shandong Province(2021LZGC006)

Abstract:

To establish a system for rapid identification of millet gene functions, in this study, we compared the effects of explants from different foxtail millet cultivars, the concentrations of acetyleugenone, bacterial solution, and co-culture time on the hairy root induction mediated by Agrobacteria rhizogenes strain K599. When the shoot tips were infected with bacterial solution 0.5 optical density (OD) and containing 100 μmol L-1 acetyleugenone, and co-cultured for three days, the induction efficiency of hairy roots reached to 80.24%. Using this system, we analyzed the transformation efficiency of the hairy roots, the subcellular localization of SiDVL1and SiDVL3, and gene functions of SiNHX2, SiCBL4, and SiCBL7. The PCR results of GFP gene and GFP fluorescence microscopic observation indicated that the transformation efficiency of the hairy roots was over 70%. The subcellular localization of SiDVL1 and SiDVL3 was similar in millet hairy-root and tobacco epidermal cells. Simultaneously, the survival rates of SiNHX2, SiCBL4, and SiCBL7 transgenic millet were significantly higher than that of empty vector transformed millet. Therefore, our study established an efficient and rapid method to analyze the subcellular location and to identify the function of genes from foxtail millet.

Key words: Agrobacterium rhizogenes, hairy roots, foxtail millet (Setaria italica), transformation efficiency, gene function identification

Fig. 1

Effects of different types of explants on hairy roots induction A and B: Foxtail millet’s hairy-root development after A. rhizogenes strain K599 infecting embryogenic callus for 10 days and bud tips for 5 days, respectively. C: the root length of induced hairy roots cultured for 14 days. D: the induction efficiency of hairy roots cultured for 14 days. Three biological experiments were repeated, n = 30. One-way ANOVA Duncan’s test is used for statistical analysis. Different letters indicate significant differences at P < 0.05."

Fig. 2

Effects of bud tip explants from different millet varieties on hairy roots induction A-E: the effects of Ci846, xiaomi, Dungu, Longzhu 1, and Yugu 1 on hairy roots induction, respectively. F: the root length of induced hairy roots using bud tips from indicated varieties as the explants. G: the induction efficiency of hairy roots when bud tips from indicated varieties were used as the explants. H: the average induced hairy root number when bud tips from indicated varieties were used as the explants. Three biological experiments were repeated, n = 30. One-way ANOVA Duncan’s test is used for statistical analysis; ns indicates no significant correlation at the 0.05 probability level."

Fig. 3

Effects of AS on foxtail millet hairy roots induction A-E: the effect of 0, 50, 100, 150, and 200 μmol L-1 AS on hairy roots induction, respectively. F: the root length of induced hairy roots in the presence of 0, 50, 100, 150, and 200 μmol L-1 AS. G: the induction efficiency of hairy roots in the presence of 0, 50, 100, 150, and 200 μmol L-1 AS. H: the average induced root number in the presence of 0, 50, 100, 150, and 200 μmol L-1 AS. Three biological experiments were repeated, n = 30. One-way ANOVA Duncan’s test is used for statistical analysis. Different letters indicate significant differences at P < 0.05."

Fig. 4

Effect of bacterium concentration on foxtail millet hairy roots induction A-F: the effect of bacteria solution at concentrations 0.1, 0.2, 0.3, 0.5, 0.8, and 1.0 OD600 on hairy roots induction, respectively. G: the root length of induced hairy roots by bacteria at concentrations mentioned in (A-F), respectively. H: the induction efficiency of hairy roots by bacteria solution at concentrations mentioned in (A-F), respectively. I: the average induced rooting number by bacteria solution at concentrations mentioned in (A-F), respectively. Three biological experiments were repeated, n = 30. One-way ANOVA Duncan’s test is used for statistical analysis. Different letters indicate significant differences at P < 0.05."

Fig. 5

Effect of co-culture time on foxtail millet hairy roots induction A-E: the effects of co-culture time of 1, 2, 3, 4, and 5 day(s) on hairy roots induction, respectively. F: the root length of induced hairy roots after co-culture for 1, 2, 3, 4, and 5 day(s). G: the induction efficiency of hairy roots after co-culture for 1, 2, 3, 4, and 5 day(s). H: the average hairy root number after co-culture for 1, 2, 3, 4, and 5 day(s). Three biological experiments were repeated, n = 30. One-way ANOVA Duncan’s test is used for statistical analysis. Different letters indicate significant differences at P < 0.05."

Table 1

Data statistics of hairy root by shoot tip explants induction"

试验编号
Test ID
侵染的芽尖总数
Total number of
infected shoot tips
诱导发根的芽尖数
Number of bud tips to induce rooting
发根总数
Total bud tip rooting number
平均发根数
Average rooting number
发根率
Rooting rate
(%)
1 19 17 63 4 89.47
2 22 17 44 3 77.27
3 21 14 44 3 66.67
4 21 21 65 3 100.00
5 21 17 64 2 80.95
6 25 19 57 3 76.00
7 20 17 55 3 85.00
8 22 18 66 3 81.82
9 18 14 41 5 77.78
10 21 17 50 3 80.95
11 20 13 29 2 65.00
12 23 19 38 2 82.61
总计 Total 253 203 616 3 80.24

Fig. 6

Verification of transgenic hairy root by PCR M: DNA marker. 1: the gene expression vector was used as the positive control. 2-33: DNA from induced hairy root samples. WT: the empty vector from induced hairy root samples was used as the negative control."

Fig. 7

Subcellular localization of SiDVL genes using A. rhizogenes-mediated hairy root transformation"

Fig. 8

Responses of foxtail millet with SiNHX2, SiCBL4, and SiCBL7 transformed hairy-roots to salt stress A: the phenotypes of millet seedlings with SiNHX2, SiCBL4, and SiCBL7 transformed hairy-roots when treated on MS medium with or without 175 mmol L-1 NaCl for 7 days. B: the survival rates of millet seedlings with SiNHX2, SiCBL4, and SiCBL7 transformed hairy-roots when treated on MS medium with or without 175 mmol L-1 NaCl for 7 days. Three biological experiments were repeated, n = 30. ns indicates no significant correlation in the 0.05 probability level; *** indicates significant correlation at the 0.01 probability level."

[1] Hu H, Mauro-Herrera M, Doust A N. Domestication and improvement in the model C4 grass, Seteria. Front Plant Sci, 2018, 9: 719.
[2] Bandyopadhyay T, Muthamilarasan M, Prasad M. Millets for next generation climate-smart agriculture. Front Plant Sci, 2017, 8: 1266.
doi: 10.3389/fpls.2017.01266 pmid: 28769966
[3] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167.
doi: 10.1038/s41477-020-0747-7
[4] Zhao M C, Tang S, Zhang H S, He M M, Liu J H, Zhi H, Sui Y, Liu X T, Jia G Q, Zhao Z Y, Yan J J, Zhang B C, Zhou Y H, Chu J F, Wang X C, Zhao B H, Tang W Q, Li J Y, Wu C Y, Liu X G, Diao X M. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc Natl Acad Sci USA, 2020, 117: 21766-21774.
doi: 10.1073/pnas.2002278117 pmid: 32817516
[5] Singh R K, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma, 2016, 253: 691-707.
doi: 10.1007/s00709-015-0905-3
[6] Song G Q, Walworth A, Hancock J F. Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tissue Organ Cult, 2012, 108: 445-453.
doi: 10.1007/s11240-011-0056-y
[7] Santos C M, Romeiro D, Silva J P, Basso M F, Molinari H B C, Centeno D C. An improved protocol for efficient transformation and regeneration of Setaria italica. Plant Cell Rep, 2020, 39: 501-510.
doi: 10.1007/s00299-019-02505-y pmid: 31915913
[8] 陈倩楠, 王轲, 汤沙, 杜丽璞, 智慧, 贾冠清, 赵宝华, 叶兴国, 刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究. 作物学报, 2018, 44: 1423-1432.
doi: 10.3724/SP.J.1006.2018.01423
Chen Q N, Wang K, Tang S, Du L P, Zhi H, Jia G Q, Zhao B H, Ye X G, Diao X M. Use of Bar gene for the stable transformation of herbicide-resistant foxtail millet plants. Acta Agron Sin, 2018, 44: 1423-1432. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01423
[9] 李颜方, 杜艳伟, 张正, 王高鸿, 赵根有, 赵晋锋, 余爱丽. 农杆菌介导谷子成熟胚遗传转化体系的建立与优化. 作物杂志, 2019, (3): 73-79.
Li Y F, Du Y W, Zhang Z, Wang G H, Zhao G Y, Zhao J F, Yu A L. Establishment and optimization of Agrobacterium mediated transformation system for mature embryo of foxtail millet. Crops, 2019, (3): 73-79. (in Chinese with English abstract)
[10] Mehrotra S, Srivastava V, Ur Rahman L, Kukreja A K. Hairy root biotechnology-indicative timeline to understand missing links and future outlook. Protoplasma, 2015, 252: 1189-1201.
doi: 10.1007/s00709-015-0761-1 pmid: 25626898
[11] Roy A. Hairy root culture an alternative for bioactive compound production from medicinal plants. Curr Pharm Biotechnol, 2021, 22: 136-149.
[12] Lystvan K, Listvan V, Shcherbak N, Kuchuk M. Rhizoextraction potential of convolvulus tricolor hairy roots for Cr6+, Ni2+, and Pb2+removal from aqueous solutions. Appl Biochem Biotechnol, 2020, 10: 1007.
[13] Garagounis C, Beritza K, Georgopoulou M E, Sonawane P, Haralampidis K, Goossens A, Aharoni A, Papadopoulou K. A hairy-root transformation protocol for Trigonella foenum-graecum L. as a tool for metabolic engineering and specialized metabolite pathway elucidation. Plant Physiol Biochem, 2020, 154: 451-462.
doi: 10.1016/j.plaphy.2020.06.011
[14] Naeini M S, Naghavi M R, Bihamta M R, Sabokdast M, Salehi M. Production of some benzylisoquinoline alkaloids in Papaver armeniacum L. hairy root cultures elicited with salicylic acid and methyl jasmonate. Plant J Tissue Cult Assoc, 2021, 2: 57.
[15] Pedreno M A, Almagro L. Carrot hairy roots: factories for secondary metabolite production. J Exp Bot, 2020, 71: 6861-6864.
doi: 10.1093/jxb/eraa435 pmid: 33382895
[16] 未晓巍, 陈志鹏, 郭丽, 刘凡语, 谈韫, 周晓馥. 玉米毛状根再生植株根系的植物内源激素动态变化研究. 吉林师范大学学报(自然科学版), 2020, 41(2): 116-121.
Wei X W, Chen Z P, Guo L, Liu F Y, Tan W, Zhou X F. Dynamic research of endogenous hormone in the roots of hairy root regeneration plant of maize. J Jilin Norm Univ (Nat Sci Edn), 2020, 41(2): 116-121. (in Chinese with English abstract)
[17] Chen Z Y, Fang X K, Yuan X S, Zhang Y Y, Li H Y, Zhou Y, Cui X Y. Overexpression of transcription factor GmTGA15 enhances drought tolerance in transgenic soybean hairy roots and Arabidopsis plants. Agronomy, 2021, 11: 170.
doi: 10.3390/agronomy11010170
[18] Cui M L, Liu C, Piao C L, Liu C L. A stable Agrobacterium rhizogenes-mediated transformation of cotton (Gossypium hirsutum L.) and plant regeneration from transformed hairy root via embryogenesis. Front Plant Sci, 2020, 11: 604255.
doi: 10.3389/fpls.2020.604255
[19] 徐悦, 曹英萍, 王玉, 付春祥, 戴绍军. 发根农杆菌介导的菠菜毛状根遗传转化体系的建立. 植物学报, 2019, 54: 515-521.
doi: 10.11983/CBB18257
Xu Y, Cao Y P, Wang Y, Fu C X, Dai S J. Agrobacterium rhizogenes-mediated transformation system of Spinacia oleracea. Chin Bull Bot, 2019, 54: 515-521 (in Chinese with English abstract).
[20] 陶均, 谭汝芳, 李玲. 发根农杆菌介导的向日葵遗传转化. 作物学报, 2006, 32: 743-748.
Tao J, Tan R F, Li L. Genetic transformation of sunflower (Helianthus annuus L.) mediated by Agrobacterium rhizogenes. Acta Agron Sin, 2006, 32: 743-748.
[21] 郑传进, 吴小勇, 王志江. 南药巴戟天毛状根诱导条件优化研究. 现代农业科技, 2014, (10): 77-78.
Zheng C J, Wu X Y, Wang Z J. Optimization of inducement conditions for hairy roots of Morinda officinalis How. Modern Agric Sci Technol, 2014, (10): 77-78. (in Chinese with English abstract)
[22] 吴顺, 孙建春, 周凯, 王华英, 李婷, 刘姣. 钩藤毛状根的诱导及其钩藤碱含量的测定. 北方园艺, 2019, (15): 49-54.
Wu S, Sun J C, Zhou K, Wang H Y, Li T, Liu J. Induction of hairy root of Uncaria rhynchophylla and content determination of rhynchophylline. Nor Hortic, 2019, (15): 49-54. (in Chinese with English abstract)
[23] 郝紫微, 戴雨沁, 张绍铃, 王鹏. 发根农杆菌介导的杜梨毛状根遗传转化方法. 湖北农业科学, 2021, 60(1): 151-154.
Hao Z W, Dai Y X, Zhang S L, Wang P. Genetic transformation method of hairy roots mediated by Agrobacterium rhizogenes for Pyrus betulaefolia. Hubei Agric Sci, 2021, 60(1): 151-154. (in Chinese with English abstract)
[24] 段梦灵, 李鲁汉, 廖辉, 陈新月, 马钰玺, 林艳丽, 柳忠玉, 吴晓倩, 潘佑找, 伍翔. 发根农杆菌介导的虎杖转基因体系优化. 现代农业科技, 2021, (4): 46-50.
Duan M L, Li L H, Liao H, Chen X Y, Ma Y X, Lin Y L, Liu Z Y, Wu X Q, Pan Y Z, Wu X. Optimization of Agrobacterium rhizogenes-mediated Polygonum cuspidatum transgenic system. Modern Agric Sci Technol, 2021, (4): 46-50. (in Chinese with English abstract)
[25] 王宏伟, 梁业红, 史振声, 张世煌. 共培养环境对玉米遗传转化的影响. 西北农业学报, 2011, 20(9): 40-42.
Wang H W, Liang Y H, Shi Z S, Zhang S H. Study on co-culture system to genetic transformation of maize. Acta Agric Boreali-Occident Sin, 2011, 20(9): 40-42. (in Chinese with English abstract)
[26] Batistič O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1793: 985-992.
doi: 10.1016/j.bbamcr.2008.10.006 pmid: 19022300
[27] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 2005, 444: 139-158.
doi: 10.1016/j.abb.2005.10.018 pmid: 16309626
[28] 赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39: 360-367.
doi: 10.3724/SP.J.1006.2013.00360
Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agron Sin, 2013, 39: 360-367. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00360
[29] Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem, 2001, 276: 36931-36938.
doi: 10.1074/jbc.M103650200 pmid: 11479290
[30] Cao D, Hou W S, Liu W, Yao W W, Wu C X, Liu X B, Han T F. Overexpression of TaNHX2 enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tissue Organ Cult, 2011, 107: 541-552.
doi: 10.1007/s11240-011-0005-9
[31] Ariño-Estrada G, Mitchell G S, Saha P, Arzani A, Cherry S R, Blumwald E, Kyme A Z. Imaging salt uptake dynamics in plants using PET. Sci Rep, 2019, 9: 18626.
doi: 10.1038/s41598-019-54781-z pmid: 31819118
[32] Wen J Q, Lease K A, Walker J C. DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J, 2004, 37: 668-677.
doi: 10.1111/tpj.2004.37.issue-5
[33] Combier J P, Küster H, Journet E P, Hohnjec N, Gamas P, Niebel A. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Mol Plant Microbe Interact, 2008, 21: 1118-1127.
doi: 10.1094/MPMI-21-8-1118
[34] 邵明成, 王大鹏. 发根农杆菌诱导产生发状根及其在植物科学领域中的应用. 黑龙江农业科学, 2015, (3): 146-150.
Shao M C, Wang D P. Hairy root induced by Agrobacterium rhizogenes and the application in plant science. Heilongjiang Agric Sci, 2015, (3): 146-150. (in Chinese with English abstract)
[35] 贺榆婷, 卫云丰, 张洁, 郭永正, 叶玲, 韩渊怀, 王兴春, 杨致. 谷子高效离体再生基因型和培养基的筛选. 核农学报, 2019, 33: 1265-1272.
doi: 10.11869/j.issn.100-8551.2019.07.1265
He Y T, Wei Y F, Zhang J, Guo Y Z, Ye L, Han Y H, Wang X C, Yang Z. Screening of high efficient genotypes and medium for in vitro regeneration in foxtail millet. Acta Agric Nucl Sin, 2019, 33: 1265-1272. (in Chinese with English abstract)
[1] LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495.
[2] GAO Guo-Ying, WU Xiao-Fang, HUANG Wei, ZHOU Ding-Gang, ZHANG Da-Wei, ZHOU Mei-Liang, ZHANG Kai-Xuan, YAN Ming-Li. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea [J]. Acta Agronomica Sinica, 2020, 46(9): 1322-1331.
[3] MIN Dong-Hong,HE Sha,ZHANG Yan,XIA Lan-Qin. Optimization of Key Bombardment Parameters in Biolistic Mediated Transformation in Wheat [J]. Acta Agron Sin, 2013, 39(01): 60-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .