Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1758-1768.doi: 10.3724/SP.J.1006.2023.24197
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WAN Yi-Man(), XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai*()
[1] | Hu H, Mauro-Herrera M, Doust A N. Domestication and improvement in the model C4 grass, Seteria. Front Plant Sci, 2018, 9: 719. |
[2] |
Bandyopadhyay T, Muthamilarasan M, Prasad M. Millets for next generation climate-smart agriculture. Front Plant Sci, 2017, 8: 1266.
doi: 10.3389/fpls.2017.01266 pmid: 28769966 |
[3] |
Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167.
doi: 10.1038/s41477-020-0747-7 |
[4] |
Zhao M C, Tang S, Zhang H S, He M M, Liu J H, Zhi H, Sui Y, Liu X T, Jia G Q, Zhao Z Y, Yan J J, Zhang B C, Zhou Y H, Chu J F, Wang X C, Zhao B H, Tang W Q, Li J Y, Wu C Y, Liu X G, Diao X M. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc Natl Acad Sci USA, 2020, 117: 21766-21774.
doi: 10.1073/pnas.2002278117 pmid: 32817516 |
[5] |
Singh R K, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma, 2016, 253: 691-707.
doi: 10.1007/s00709-015-0905-3 |
[6] |
Song G Q, Walworth A, Hancock J F. Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tissue Organ Cult, 2012, 108: 445-453.
doi: 10.1007/s11240-011-0056-y |
[7] |
Santos C M, Romeiro D, Silva J P, Basso M F, Molinari H B C, Centeno D C. An improved protocol for efficient transformation and regeneration of Setaria italica. Plant Cell Rep, 2020, 39: 501-510.
doi: 10.1007/s00299-019-02505-y pmid: 31915913 |
[8] |
陈倩楠, 王轲, 汤沙, 杜丽璞, 智慧, 贾冠清, 赵宝华, 叶兴国, 刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究. 作物学报, 2018, 44: 1423-1432.
doi: 10.3724/SP.J.1006.2018.01423 |
Chen Q N, Wang K, Tang S, Du L P, Zhi H, Jia G Q, Zhao B H, Ye X G, Diao X M. Use of Bar gene for the stable transformation of herbicide-resistant foxtail millet plants. Acta Agron Sin, 2018, 44: 1423-1432. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01423 |
|
[9] | 李颜方, 杜艳伟, 张正, 王高鸿, 赵根有, 赵晋锋, 余爱丽. 农杆菌介导谷子成熟胚遗传转化体系的建立与优化. 作物杂志, 2019, (3): 73-79. |
Li Y F, Du Y W, Zhang Z, Wang G H, Zhao G Y, Zhao J F, Yu A L. Establishment and optimization of Agrobacterium mediated transformation system for mature embryo of foxtail millet. Crops, 2019, (3): 73-79. (in Chinese with English abstract) | |
[10] |
Mehrotra S, Srivastava V, Ur Rahman L, Kukreja A K. Hairy root biotechnology-indicative timeline to understand missing links and future outlook. Protoplasma, 2015, 252: 1189-1201.
doi: 10.1007/s00709-015-0761-1 pmid: 25626898 |
[11] | Roy A. Hairy root culture an alternative for bioactive compound production from medicinal plants. Curr Pharm Biotechnol, 2021, 22: 136-149. |
[12] | Lystvan K, Listvan V, Shcherbak N, Kuchuk M. Rhizoextraction potential of convolvulus tricolor hairy roots for Cr6+, Ni2+, and Pb2+removal from aqueous solutions. Appl Biochem Biotechnol, 2020, 10: 1007. |
[13] |
Garagounis C, Beritza K, Georgopoulou M E, Sonawane P, Haralampidis K, Goossens A, Aharoni A, Papadopoulou K. A hairy-root transformation protocol for Trigonella foenum-graecum L. as a tool for metabolic engineering and specialized metabolite pathway elucidation. Plant Physiol Biochem, 2020, 154: 451-462.
doi: 10.1016/j.plaphy.2020.06.011 |
[14] | Naeini M S, Naghavi M R, Bihamta M R, Sabokdast M, Salehi M. Production of some benzylisoquinoline alkaloids in Papaver armeniacum L. hairy root cultures elicited with salicylic acid and methyl jasmonate. Plant J Tissue Cult Assoc, 2021, 2: 57. |
[15] |
Pedreno M A, Almagro L. Carrot hairy roots: factories for secondary metabolite production. J Exp Bot, 2020, 71: 6861-6864.
doi: 10.1093/jxb/eraa435 pmid: 33382895 |
[16] | 未晓巍, 陈志鹏, 郭丽, 刘凡语, 谈韫, 周晓馥. 玉米毛状根再生植株根系的植物内源激素动态变化研究. 吉林师范大学学报(自然科学版), 2020, 41(2): 116-121. |
Wei X W, Chen Z P, Guo L, Liu F Y, Tan W, Zhou X F. Dynamic research of endogenous hormone in the roots of hairy root regeneration plant of maize. J Jilin Norm Univ (Nat Sci Edn), 2020, 41(2): 116-121. (in Chinese with English abstract) | |
[17] |
Chen Z Y, Fang X K, Yuan X S, Zhang Y Y, Li H Y, Zhou Y, Cui X Y. Overexpression of transcription factor GmTGA15 enhances drought tolerance in transgenic soybean hairy roots and Arabidopsis plants. Agronomy, 2021, 11: 170.
doi: 10.3390/agronomy11010170 |
[18] |
Cui M L, Liu C, Piao C L, Liu C L. A stable Agrobacterium rhizogenes-mediated transformation of cotton (Gossypium hirsutum L.) and plant regeneration from transformed hairy root via embryogenesis. Front Plant Sci, 2020, 11: 604255.
doi: 10.3389/fpls.2020.604255 |
[19] |
徐悦, 曹英萍, 王玉, 付春祥, 戴绍军. 发根农杆菌介导的菠菜毛状根遗传转化体系的建立. 植物学报, 2019, 54: 515-521.
doi: 10.11983/CBB18257 |
Xu Y, Cao Y P, Wang Y, Fu C X, Dai S J. Agrobacterium rhizogenes-mediated transformation system of Spinacia oleracea. Chin Bull Bot, 2019, 54: 515-521 (in Chinese with English abstract). | |
[20] | 陶均, 谭汝芳, 李玲. 发根农杆菌介导的向日葵遗传转化. 作物学报, 2006, 32: 743-748. |
Tao J, Tan R F, Li L. Genetic transformation of sunflower (Helianthus annuus L.) mediated by Agrobacterium rhizogenes. Acta Agron Sin, 2006, 32: 743-748. | |
[21] | 郑传进, 吴小勇, 王志江. 南药巴戟天毛状根诱导条件优化研究. 现代农业科技, 2014, (10): 77-78. |
Zheng C J, Wu X Y, Wang Z J. Optimization of inducement conditions for hairy roots of Morinda officinalis How. Modern Agric Sci Technol, 2014, (10): 77-78. (in Chinese with English abstract) | |
[22] | 吴顺, 孙建春, 周凯, 王华英, 李婷, 刘姣. 钩藤毛状根的诱导及其钩藤碱含量的测定. 北方园艺, 2019, (15): 49-54. |
Wu S, Sun J C, Zhou K, Wang H Y, Li T, Liu J. Induction of hairy root of Uncaria rhynchophylla and content determination of rhynchophylline. Nor Hortic, 2019, (15): 49-54. (in Chinese with English abstract) | |
[23] | 郝紫微, 戴雨沁, 张绍铃, 王鹏. 发根农杆菌介导的杜梨毛状根遗传转化方法. 湖北农业科学, 2021, 60(1): 151-154. |
Hao Z W, Dai Y X, Zhang S L, Wang P. Genetic transformation method of hairy roots mediated by Agrobacterium rhizogenes for Pyrus betulaefolia. Hubei Agric Sci, 2021, 60(1): 151-154. (in Chinese with English abstract) | |
[24] | 段梦灵, 李鲁汉, 廖辉, 陈新月, 马钰玺, 林艳丽, 柳忠玉, 吴晓倩, 潘佑找, 伍翔. 发根农杆菌介导的虎杖转基因体系优化. 现代农业科技, 2021, (4): 46-50. |
Duan M L, Li L H, Liao H, Chen X Y, Ma Y X, Lin Y L, Liu Z Y, Wu X Q, Pan Y Z, Wu X. Optimization of Agrobacterium rhizogenes-mediated Polygonum cuspidatum transgenic system. Modern Agric Sci Technol, 2021, (4): 46-50. (in Chinese with English abstract) | |
[25] | 王宏伟, 梁业红, 史振声, 张世煌. 共培养环境对玉米遗传转化的影响. 西北农业学报, 2011, 20(9): 40-42. |
Wang H W, Liang Y H, Shi Z S, Zhang S H. Study on co-culture system to genetic transformation of maize. Acta Agric Boreali-Occident Sin, 2011, 20(9): 40-42. (in Chinese with English abstract) | |
[26] |
Batistič O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1793: 985-992.
doi: 10.1016/j.bbamcr.2008.10.006 pmid: 19022300 |
[27] |
Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 2005, 444: 139-158.
doi: 10.1016/j.abb.2005.10.018 pmid: 16309626 |
[28] |
赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39: 360-367.
doi: 10.3724/SP.J.1006.2013.00360 |
Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agron Sin, 2013, 39: 360-367. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00360 |
|
[29] |
Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem, 2001, 276: 36931-36938.
doi: 10.1074/jbc.M103650200 pmid: 11479290 |
[30] |
Cao D, Hou W S, Liu W, Yao W W, Wu C X, Liu X B, Han T F. Overexpression of TaNHX2 enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tissue Organ Cult, 2011, 107: 541-552.
doi: 10.1007/s11240-011-0005-9 |
[31] |
Ariño-Estrada G, Mitchell G S, Saha P, Arzani A, Cherry S R, Blumwald E, Kyme A Z. Imaging salt uptake dynamics in plants using PET. Sci Rep, 2019, 9: 18626.
doi: 10.1038/s41598-019-54781-z pmid: 31819118 |
[32] |
Wen J Q, Lease K A, Walker J C. DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J, 2004, 37: 668-677.
doi: 10.1111/tpj.2004.37.issue-5 |
[33] |
Combier J P, Küster H, Journet E P, Hohnjec N, Gamas P, Niebel A. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Mol Plant Microbe Interact, 2008, 21: 1118-1127.
doi: 10.1094/MPMI-21-8-1118 |
[34] | 邵明成, 王大鹏. 发根农杆菌诱导产生发状根及其在植物科学领域中的应用. 黑龙江农业科学, 2015, (3): 146-150. |
Shao M C, Wang D P. Hairy root induced by Agrobacterium rhizogenes and the application in plant science. Heilongjiang Agric Sci, 2015, (3): 146-150. (in Chinese with English abstract) | |
[35] |
贺榆婷, 卫云丰, 张洁, 郭永正, 叶玲, 韩渊怀, 王兴春, 杨致. 谷子高效离体再生基因型和培养基的筛选. 核农学报, 2019, 33: 1265-1272.
doi: 10.11869/j.issn.100-8551.2019.07.1265 |
He Y T, Wei Y F, Zhang J, Guo Y Z, Ye L, Han Y H, Wang X C, Yang Z. Screening of high efficient genotypes and medium for in vitro regeneration in foxtail millet. Acta Agric Nucl Sin, 2019, 33: 1265-1272. (in Chinese with English abstract) |
[1] | LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495. |
[2] | GAO Guo-Ying, WU Xiao-Fang, HUANG Wei, ZHOU Ding-Gang, ZHANG Da-Wei, ZHOU Mei-Liang, ZHANG Kai-Xuan, YAN Ming-Li. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea [J]. Acta Agronomica Sinica, 2020, 46(9): 1322-1331. |
[3] | MIN Dong-Hong,HE Sha,ZHANG Yan,XIA Lan-Qin. Optimization of Key Bombardment Parameters in Biolistic Mediated Transformation in Wheat [J]. Acta Agron Sin, 2013, 39(01): 60-67. |
|