欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (10): 1478-1487.doi: 10.3724/SP.J.1006.2019.94002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其与甘蔗花叶病毒VPg互作

翟玉山,赵贺,张海,邓宇晴,程光远,杨宗桃,王彤,彭磊,徐倩,董萌,徐景升()   

  1. 福建农林大学国家甘蔗工程技术研究中心 / 农业部福建甘蔗生物学与遗传育种重点实验室 / 教育部作物遗传育种与综合利用重点实验室, 福建福州350002
  • 收稿日期:2018-12-31 接受日期:2019-01-19 出版日期:2019-10-12 网络出版日期:2019-09-10
  • 通讯作者: 徐景升
  • 基金资助:
    本研究由国家自然科学基金项目资助(31371688)

Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus

ZHAI Yu-Shan,ZHAO He,ZHANG Hai,DENG Yu-Qing,CHENG Guang-Yuan,YANG Zong-Tao,WANG Tong,PENG Lei,XU Qian,DONG Meng,XU Jing-Sheng()   

  1. Sugarcane Research & Development Centre, China Agricultural Technology System, Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
  • Received:2018-12-31 Accepted:2019-01-19 Published:2019-10-12 Published online:2019-09-10
  • Contact: Jing-Sheng XU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31371688)

摘要:

NAD(P)H脱氢酶(NDH)复合体介导循环电子传递, 对于维持叶绿体高效的光合作用具有重要作用。甘蔗(Saccharum spp. hybrid)中NDH复合体应答及参与甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)的侵染尚未见报道。本研究克隆了甘蔗NDH复合体的O亚基, 命名为ScNdhO, 其开放读码框(open reading frame, ORF)长度为471 bp, 编码长度为156 aa的蛋白。生物信息学分析表明, ScNdhO为稳定的亲水性蛋白, 不存在信号肽, 无跨膜结构域; 蛋白二级结构元件多为无规则卷曲, 具有典型的NDH复合体O亚基结构域; 系统进化树分析表明, 该蛋白属于NDH复合体O亚基蛋白家族。实时荧光定量 PCR分析发现, ScNdhO基因的表达具有明显的组织特异性, 在成熟甘蔗叶片中的表达量最高, 在茎中的表达量最低, 在根中几乎不表达; ScNdhO基因在SCMV侵染早期上调表达, 后期下调表达。亚细胞定位分析表明, ScNdhO定位于叶绿体。酵母双杂交(yeast two hybrid, Y2H)和双分子荧光互补(bimolecular fluorescence complementation, BiFC)实验表明, ScNdhO与SCMV-VPg互作。推测ScNdhO被SCMV选择性利用, 可能参与SCMV基因组复制及花叶病症状的产生。

关键词: 甘蔗, SCMV, 叶绿体, NAD(P)H脱氢酶复合体, O亚基

Abstract:

NAD(P)H dehydrogenase (NDH) complex mediates cyclic electron transports, playing key role in efficient photosynthesis in chloroplast. The involvement of NDH complex in Sugarcane mosaic virus (SCMV) infection of sugarcane (Saccharum spp. hybrid) has not been reported. In this study, we isolated the coding sequence of the subunit of the NAD(P)H dehydrogenase complex from sugarcane and designated it as ScNdhO. The open reading frame (ORF) of ScNdhO is 471 bp and encodes a 156 aa length protein. Bioinformatics analysis showed that ScNdhO is a stable hydrophilic protein with no signal peptide and transmembrane domain. The secondary structure of ScNdhO is composed of mostly random coilα-helices, with a typical domain of NDH complex O subunit. Phylogenetic tree analysis showed that ScNdhO belongs to the NDHO supperfamily. Real-time quantitative PCR analysis showed that ScNdhO gene was tissue specific in sugarcane, with the lowest expression level in roots or stem, and the highest in leaf. The expression of ScNdhO was upregulated in the early stage of SCMV infection, but downregulated with time going. Subcellular location assays showed that ScNdhO was located in chloroplast. ScNdhO interacted with the VPg from SCMV as demonstrated by yeast two hybrid and bimolecular fluorescence complementation assays. We proposed that ScNdhO should be selectively employed by SCMV and involved in the mosaic symptom.

Key words: sugarcane, SCMV, chloroplast, NAD(P)H dehydrogenase complex, O subunit

表1

本研究使用的引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Strategy
ScNdhO-F ACCAAGCCGAGCAATCCCTC 基因克隆
ScNdhO-R CACCGTGTCCTGACCCCAAG Gene cloning
ScNdhO-AD-F GGAATTCCATATGATGGAAGCCCTCGCCTCG 酵母双杂交捕获载体构建
ScNdhO-AD-R CGGAATTCTATCCTCTCGTAGTCGAGCTTG Vector generation for Y2H
ScNdhO-YC-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAAGCCCTCGCCTCG 双分子荧光互补载体构建
ScNdhO-YC-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTATCCTCTCGTAGTCGAGCTTG Vector generation for BiFC
ScNdhO-qF CGATGAAGAAAGGGCAGA 定量PCR
ScNdhO-qR TGTAGAATGGCGGGTGTC Real-time-qPCR
GAPDH-F CACGGCCACTGGAAGCA 内参基因
GAPDH-R TCCTCAG GGTTCCTGATGCC Reference gene
eEF-1α-F TTTCACACTTGGAGTGAAGCAGAT 内参基因
eEF-1α-R GACTTCCTTCACAATCTCATCATAA Reference gene
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测
SCMV-CP-R ACGCTACACCAGAAGACACT Detection of SCMV

图1

ScNdhO蛋白的氨基酸序列同源性分析和系统进化树分析"

图2

ScNdhO-GFP在本氏烟表皮细胞中的定位 ScNdhO-GFP的定位如箭头所示; Up row: GFP对照; Middle row: ScNdhO-GFP定位; Down row: ScNdhO-GFP与VPg-mCherry共定位; bar = 50 μm。"

图3

ScNdhO基因在甘蔗不同组织中的表达模式 误差线为每组处理的标准误差(n = 3)。Leaf roll: 心叶; Leaf: 正一叶; Sheath: 叶鞘; Bud: 腋芽; Stem: 茎; Root: 根。"

图4

ScNdhO基因应答SCMV侵染的表达模式 误差线为每组处理的标准误差(n = 3)。"

图5

Y2H检测ScNdhO与SCMV-VPg的互作 pGADT7-T和pGBKT7-53组合作为阳性对照, pGADT7-T和pGBKT7-Lam组合作为阴性对照。SD/-Leu/-Trp: 缺少亮氨酸(Leu)和色氨酸(Trp)的酵母合成限定基本培养基; SD/-Leu/-Trp/-His/-Ade: 缺少亮氨酸(Leu)、色氨酸(Trp)、组氨酸(His)和腺嘌呤(Ade)的酵母合成限定基本培养基。"

图6

BiFC检测ScNdhO与SCMV-VPg的互作 ScNdhO融合于YFP的C末端, SCMV-VPg融合于YFP的N末端, 然后在本氏烟叶片中瞬时表达, 48 h后激光共聚焦观察。bar = 50 μm。"

[1] 翁卓, 黄寒 . 中国制糖产业竞争力对比与政策建议——基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, ( 4):65-72.
Weng Z, Huang H . Comparative analysis on China’s sugar industry competitiveness: based onthe comparison of Brazil, India and Thailand sugar industry. Sugar Canesugar, 2015, ( 4):65-72 (in Chinese with English abstract).
[2] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露 . 国外甘蔗产业发展现状. 世界农业, 2015, ( 8):147-152.
Liu Y Q, Li Y P, Liang H W, Song Q D, Qin X L, Ye L . Current status and development of the abroad sugarcane industry. Wold Agric, 2015, ( 8):147-152 (in Chinese with English abstract).
[3] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P . Viral metagenomic-based screening of sugarcane from florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018,102:2317-2323.
[4] Li W F, Zhang R Y, Shan H L, Yin J, Wang X Y, Luo Z M, Huang Y K, Shen K . Occurrence dynamics and control strategies of major pests and diseases of sugarcane in Yunnan. Agric Sci Technol, 2017,18:2490-2494.
[5] 徐正银, 吕榜丽, 李璞, 周龙武, 唐瑶, 唐君海, 秦碧霞, 蒙姣荣, 温荣辉, 陈保善 . 广西甘蔗病毒病害调查及病原病毒鉴定. 南方农业学报, 2014,45:1957-1962.
Xu Z Y, Lyu B L, Li P, Zhou L W, Tang Y, Tang J H, Qin B X, Meng J R, Wen R H, Chen B S . Disease survey and identification of viruses in sugarcane in Guangxi. J South Agric, 2014,45:1957-1962 (in Chinese with English abstract).
[6] Wu L, Zu X, Wang S, Chen Y . Sugarcane mosaic virus—Long history but still a threat to industry. Crop Prot, 2012,42:74-78.
[7] 熊国如, 李增平, 赵婷婷, 蔡文伟, 王俊刚, 王文治, 冯翠莲, 张雨良, 张树珍 . 海南蔗区甘蔗病害种类及发生情况. 热带作物学报, 2010,31:1588-1595.
Xiong G R, Li Z P, Zhao T T, Cai W W, Wang J G, Wang W Z, Feng C L, Zhang Y L, Zhang S Z . Primary investigation to sugarcane on the diseases in Hainan Province. Chin J Trop Crops, 2010,31:1588-1595 (in Chinese with English abstract).
[8] Xu D L, Park J W, Mirkov T E, Zhou G H . Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008,153:1031-1039.
[9] Putra L K, Kristini A, Achadian E M A, Damayanti T A . Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Technol, 2014,16:392-399.
[10] 刘家勇, 赵培方, 赵俊, 崔洁, 陈学宽, 夏红明, 杨昆, 吴才文 . 甘蔗花叶病对甘蔗叶片叶绿素含量的影响. 中国糖料, 2011, ( 4):7-9.
Liu J Y, Zhao P F, Zhao J, Cui J, Chen X K, Xia H M, Yang K, Wu C W . Effect of Sugarcane mosaic virus on chlorophyll content of sugarcane leaves. Sugar Crops China, 2011, ( 4):7-9 (in Chinese with English abstract).
[11] Koike H, Gillaspie A G. Mosaic. In: Ricaud C, Egan B T, Gillaspie A G, Hughes C G, eds. Diseases of Sugarcane, Major Diseases. Amsterdam: Elsevier, 1989. pp 301-322.
[12] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S . Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N- PIPO. Sci Rep, 2017,7:9868, doi: 10.1038/s41598-017- 10497-6.
[13] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升 . 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016,45:135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S . The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ( Nat Sci Edn), 2016,45:135-140 (in Chinese with English abstract).
[14] 翟玉山, 彭磊, 杨永庆, 邓宇晴, 程光远, 郑艳茹, 徐景升 . 甘蔗条纹花叶病毒 HC-Pro、P3N-PIPO、CP和VPg基因酵母双杂交诱饵表达载体的构建及自激活检测. 华北农学报, 2016,31(1):83-89.
doi: 10.7668/hbnxb.2016.01.014
Zhai Y S, Peng L, Yang Y Q, Deng Y Q, Cheng G Y, Zheng Y R, Xu J S . Construction and self-activated detection of the baits of HC-Pro, P3N-PIPO, CP and VPg from Sugarcane streak mosaic virus for yeast two hybrid system. Acta Agric Boreali-Sin, 2016,31(1):83-89 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2016.01.014
[15] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升 . 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016,46:775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S . Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016,46:775-782 (in Chinese with English abstract).
[16] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S . Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus( SCSMV). Trop Plant Biol, 2017,10:45-55.
[17] Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y, Xu J S . Sugarcane elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun, 2015,466:312-318.
[18] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升 . 甘蔗条纹花叶病毒 P3 蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014,34:676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S . Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014,34:676-681 (in Chinese with English abstract).
[19] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L . Transcriptional Insights into the Sugarcane- Sorghum mosaic virus Interaction. Trop Plant Biol, 2018,11:163-176.
[20] Hall J S, Adams B, Parsons T J, French R, Lane L C, Jensen S G . Molecular cloning, sequencing, and phylogenetic relationships of a new potyvirus: Sugarcane streak mosaic virus, and a reevaluation of the classification of the Potyviridae. Mol Phylogenet Evol, 1998,10:323-332.
[21] Ward C W, Shukla D D . Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991,32:269-296.
[22] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M . Molecular characterization of a new strain of Sugarcane streak mosaic virus( SCSMV). Arch Virol, 2011,156:2101-2104.
[23] Xu D L, Zhou G H, Xie Y J, Mock R, Li R . Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010,40:432-439.
[24] Olspert A, Carr J P, Firth A E . Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucl Acids Res, 2016,44:7618-7629.
[25] Wang A . Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015,53:45-66.
[26] Wittmann S, Chatel H, Fortin M G, Laliberté J F . Interaction of the viral protein genome linked of turnip mosaic Potyvirus with the translational eukaryotic initiation factor(iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 1997,234:84-92.
[27] Heinlein M . Plant virus replication and movement. Virology , 2015, 479- 480:657-671.
[28] Cheng X, Wang A . The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. J Virol, 2017,91:e01478-16.
[29] 王镜岩, 朱圣庚, 徐长法 . 生物化学(下册)( 第3版). 北京: 高等教育出版社, 2002. pp 197-227.
Wang J Y, Zhu S G, Xu C F. Biochemistry (Volume 2), 3rd edn. Beijing: Higher Education Press, 2002. pp 197-227(in Chinese).
[30] Strand D D, Fisher N, Kramer D M . The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. J Biol Chem, 2017,292:11850-11860.
[31] 米华玲 . 类囊体膜NAD(P)H脱氢酶复合体调控光合作用的研究进展. 植物生理学报, 2016,52:1457-1465.
Mi H L . The regulation of NAD(P)H dehydrogenase complexes bound in thylakoid membranes in photosynthesis. Acta Phytophysiol Sin, 2016,52:1457-1465 (in Chinese with English abstract).
[32] Yamori W, Shikanai T . Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol, 2016,67:81-106.
[33] Ishikawa N, Takabayashi A, Sato F, Endo T . Accumulation of the components of cyclic electron flow around photosystem I in C4 plants, with respect to the requirements for ATP. Photosynth Res, 2016,129:1-17.
[34] Ishikawa N, Takabayashi A, Noguchi K, Tazoe Y, Yamamoto H, Von C S, Sato F, Endo T . NDH-Mediated cyclic electron flow around photosystem I is crucial for C4 photosynthesis. Plant Cell Physiol, 2016,57:2020-2028.
[35] Xu M, Shi N, Li Q, Mi H . An active supercomplex of NADPH dehydrogenase mediated cyclic electron flow around photosystem I from the panicle chloroplast of Oryza sativa. Acta Biochim Biophys Sin, 2014,46:757-765.
[36] 李庆华, 何志辉, 米华玲 . 叶绿体NAD(P)H脱氢酶(NDH)复合体的研究进展. 植物生理学报, 2013,49:401-409.
Li Q H, He Z H, Mi H L . The research progress of chloroplast NAD(P)H dehydrogenase (NDH) complex. Acta Phytopathol Sin, 2013,49:401-409 (in Chinese with English abstract).
[37] Wu Y X, Zheng F F, Ma W M, Han Z G, Gu Q, Shen Y G, Mi H L . Regulation of NAD(P)H dehydrogenase-dependent cyclic electron transport around PSI by NaHSO3 at low concentrations in tobacco chloroplasts. Plant Cell Physiol, 2011,52:1734-1743.
[38] Mi H, Endo T, Ogawa T, Asada K . Thylakoid membrane-bound, NADPH-Specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol, 1995,36:661-668.
[39] Mi H, Endo T, Schreiber U, Ogawa T, Asada K . NAD(P)H dehydrogenase-dependent cyclic electron flow around photosystem I in the cyanobacterium Synechocystis PCC 6803: a study of dark-starved cells and spheroplasts. Plant Cell Physiol, 1994,35:163-173.
[40] Mi H, Endo T, Schreiber U, Ogawa T, Asada K . Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol, 1992,33:1233-1237.
[41] Zhao J, Gao F, Fan D Y, Chow W S, Ma W . NDH-1 is important for photosystem I function of Synechocystis sp. strain PCC 6803 under environmental stress conditions. Front Plant Sci, 2017,8:2183, doi: 10.3389/fpls.2017.02183.
[42] Xin C, He Z, Min X, Peng L, Mi H . NdhV subunit regulates the activity of type-1 NAD(P)H dehydrogenase under high light conditions in cyanobacterium Synechocystis sp. PCC 6803. Sci Rep, 2016,6:28361, doi: 10.1038/srep28361.
[43] He Z, Xu M, Wu Y, Lyu J, Fu P, Mi H . NdhM subunit is required for the stability and the function of NAD(P)H dehydrogenase complexes involved in CO2 uptake in Synechocystis sp. strain PCC 6803. J Biol Chem, 2016,291:5902-5912.
[44] Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J Y, Mi H L . Chloroplastic NAD( P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol, 2006,141:465-474.
[45] Yuri M, Mihoko H, Chikahiro M, Ken-ichi T, Tsuyoshi E, Masao T, Toshiharu S . Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 2004,429:579-582.
[46] Mi H, Klughammer C, Schreiber U . Light-induced dynamic changes of NADPH fluorescence in Synechocystis PCC 6803 and its ndhB-defective mutant M55. Plant Cell Physiol, 2000,41:1129-1135.
[47] Endo T, Shikanai T, Takabayashi A, Asada K, Sato F . The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett, 1999,457:5-8.
[48] Kato Y, Sugimoto K, Shikanai T . NDH-PSI supercomplex assembly precedes full assembly of the NDH complex in chloroplast. Plant Physiol, 2018,176:1728-1738.
[49] Gao F, Zhao J, Wang X, Qin S, Wei L, Ma W . NdhV is a subunit of NADPH dehydrogenase essential for cyclic electron transport in Synechocystis sp. strain PCC 6803. Plant Physiol, 2016,170:752-760.
[50] Gao F, Zhao J, Chen L, Battchikova N, Ran Z, Aro E M, Ogawa T, Ma W . The NDH-1L-PSI supercomplex is important for efficient cyclic electron transport in cyanobacteria. Plant Physiol, 2016,172:1451-1464.
[51] Zhao J H, Rong W Q, Gao F D, Ogawa T, Ma W M . Subunit Q is required to stabilize the large complex of NADPH dehydrogenase in Synechocystis sp. strain PCC 6803. Plant Physiol, 2015,168:443-451.
[52] Zhang J S, Gao F D, Zhao J H, Teruo O, Wang Q X, Ma W M . NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803. J Biol Chem, 2014,289:18770-18781.
[53] Zhang J S, Gao F D, Zhao J H, Teruo O, Wang Q X, Ma W M . NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803. J Biol Chem, 2014,289:26669-26676.
[54] Dai H L, Zhang L L, Zhang J S, Mi H L, Ogawa T, Ma W M . Identification of a cyanobacterial CRR6 protein, Slr1097, required for efficient assembly of NDH-1 complexes in Synechocystis sp. PCC 6803. Plant J, 2013,75:858-866.
[55] Battchikova N, Wei L, Du L, Bersanini L, Aro E M, Ma W . Identification of novel Ssl0352 protein (NdhS), essential for efficient operation of cyclic electron transport around photosystem I, in NADPH:plastoquinone oxidoreductase (NDH-1) complexes of Synechocystis sp. PCC 6803. J Biol Chem, 2011,286:36992-37001.
[56] Kentaro I, Tsuyoshi E, Toshiharu S, Eva-Mari A . Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiol, 2011,52:1560-1568.
[57] Rumeau D, Bécuwe-Linka N, Beyly A, Louwagie M, Garin J, Peltier G . New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell, 2005,17:219-232.
[58] Wei T Y, Zhang C W, Hou X L, Wang A M . The SNARE protein Syp71 is essential for Turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog, 2013,9:e1003378.
[59] 朱海龙, 翟玉山, 程光远, 郭晋隆, 许莉萍, 徐景升 . 感染甘蔗花叶病毒甘蔗叶片cDNA文库的构建及评价. 西北农业学报, 2014,23(11):79-84.
Zhu H L, Zhai Y S, Cheng G Y, Guo J L, Xu L P, Xu J S . Construction and evaluation of yeast two hybrid cDNA library for sugarcane leaf infected with Sugarcane mosaic virus( SCMV). Acta Agric Boreali-occident Sin, 2014,23(11):79-84 (in Chinese with English abstract).
[60] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X . The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042, doi: 10.1038/srep07042.
[61] Yao W, Ruan M, Qin L, Yang C, Chen R, Chen B, Zhang M . Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017,8:104, doi: 10.3389/fpls.2017.00104.
[62] 杨川毓, 施肖堃, 张铃, 郭莺, 阮妙鸿, 陈如凯, 张木清 . 抗花叶病转SrMV-P1基因甘蔗的活性氧代谢分析. 热带作物学报, 2012,33:1101-1106.
Yang C Y, Shi X K, Zhang L, Guo Y, Ruan M H, Chen R K, Zhang M Q . Evaluation on yield and sugar characteristics in transgenic sugarcane mediated with SrMV-P1 gene from Sugarcane mosaic virus. Chin J Trop Crops, 2012,33:1101-1106 (in Chinese with English abstract).
[63] 郭莺, 阮妙鸿, 吴杨, 刘佳, 杨川毓, 张木清 . 甘蔗转HC-Pro基因的研究. 热带作物学报, 2010,31:965-971.
Guo Y, Ruan M H, Wu Y, Liu J, Yang C Y, Zhang M Q . HC-Pro gene transformation in sugarcane. Chin J Trop Crops, 2010,31:965-971 (in Chinese with English abstract).
[64] David M K, John R E . The importance of energy balance in improving photosynthetic productivity. Plant Physiol, 2011,155:70-78.
[65] Naoya N, Megumi I, Michel H, Akiho Y, Yuri Nakajima M . Promotion of cyclic electron transport around photosystem I during the evolution of NADP-malic enzyme-type C4 photosynthesis in the genus Flaveria. New Phytol, 2013,199:832-842.
[66] Munekage Y N, Eymery F, Rumeau D, Cuiné S, Oguri M, Nakamura N, Yokota A, Genty B G P . Elevated expression of PGR5 and NDH-H in bundle sheath chloroplasts in C4 flaveria species. Plant Cell Physiol, 2010,51:664-668.
[67] Darie C C, Pascalis L D, Mutschler B, Haehnel W . Studies of the Ndh complex and photosystem II from mesophyll and bundle sheath chloroplasts of the C4-type plant Zea mays. J Plant Physiol, 2006,163:800-808.
[68] Peng L W, Yoichiro F, Masayuki F, Toshiharu S . Multistep assembly of chloroplast NADH dehydrogenase-like subcomplex A requires several nucleus-encoded proteins, including CRR41 and CRR42, in Arabidopsis. Plant Cell, 2012,24:202-214.
[69] Fraile A, Garcíaarenal F, Carr J P, Loebenstein G . The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010,76:1-32.
[70] Ng J C K, Perry K L . Transmission of plant viruses by aphid vectors. Mol Plant Pathol, 2004,5:505-511.
[71] Nault L R . Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am, 1997,90:521-541.
[72] Simon H, Glen P . Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance? Environ Entomol, 2008,37:1573-1581.
[73] Salvaudon L, Mescher M C . Outcomes of co-infection by two potyviruses: implications for the evolution of manipulative strategies. Proc Biol Sci, 2013,280:20122959, doi: 10.1098/rspb. 2012.2959.
[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[5] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[6] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[7] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[8] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[9] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[10] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[11] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[12] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[13] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[14] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[15] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!