欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (3): 408-422.doi: 10.3724/SP.J.1006.2020.92027

• 耕作栽培·生理生化 • 上一篇    下一篇

水肥“三匀”技术对水稻水、氮利用效率的影响

杨志远1,李娜1,马鹏1,严田蓉1,何艳1,蒋明金1,吕腾飞1,李郁1,郭翔2,胡蓉3,郭长春1,孙永健1,马均1,*()   

  1. 1. 四川农业大学水稻研究所 / 作物生理生态及栽培四川省重点实验室, 四川成都 611130
    2. 四川省农业气象中心, 四川成都 610072
    3. 四川省原良种试验站, 四川成都 610210
  • 收稿日期:2019-05-10 接受日期:2019-09-26 出版日期:2020-03-12 发布日期:2019-10-11
  • 通讯作者: 马均 E-mail:majunp2002@163.com
  • 作者简介:E-mail: dreamislasting@163.com, Tel: 028-86290303
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0301701);本研究由国家重点研发计划项目(2017YFD0301706);四川省教育厅重点项目资助(18ZA0390)

Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice

Zhi-Yuan YANG1,Na LI1,Peng MA1,Tian-Rong YAN1,Yan HE1,Ming-Jin JIANG1,Teng-Fei LYU1,Yu LI1,Xiang GUO2,Rong HU3,Chang-Chun GUO1,Yong-Jian SUN1,Jun MA1,*()   

  1. 1. Rice Research Institute, Sichuan Agricultural University / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    2. Sichuan Agro-meteorological Center, Chengdu 610072, Sichuan, China
    3. High Quality Seed Production Station of Sichuan Province, Chengdu 610210, Sichuan, China
  • Received:2019-05-10 Accepted:2019-09-26 Online:2020-03-12 Published:2019-10-11
  • Contact: Jun MA E-mail:majunp2002@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0301701);This study was supported by the National Key Research and Development Program of China(2017YFD0301706);the Key Research Fund of the Education Department of Sichuan Province(18ZA0390)

摘要:

本研究通过3个裂区试验探究水肥“三匀”技术对水稻水、氮利用效率的影响。试验1和试验2土壤基础肥力不同, 处理一致, 主区为氮高效品种德香4103和氮低效品种宜香3724, 副区为农民习惯施肥模式(farmer’s usual management, FU)、水肥耦合模式(nitrogen-water coupling management, NWC)、水肥“三匀”模式(methodical nitrogen- water distribution management, MNWD, 采用灌溉水和氮肥投入增频减量一体化的方式), 以各自不施氮肥为对照; 试验3主区为氮高效品种德香4103、F优498及氮低效品种宜香3724、川优6203, 副区为FU、NWC及MNWD。结果表明, MNWD施氮量较NMC和FU降低20%, 灌溉水较NMC减少20%~25%, 较FU减少42%~48%。MNWD茎蘖缓升缓降, 成穗率较高, 与NWC和FU相比, 其花前物质转运量较低, 但花后光合产物积累多, 与NWC产量差异不显著, 较FU平均增产8.77%~14.18%。相关分析显示, 10~20 cm及20~30 cm土层稻株根干重与氮肥回收率、氮肥农学利用率、灌溉水生产效率及水分生产效率显著正相关, MNWD水稻根量大, 分布于10 cm以下土层的根系发达, 利于水氮利用效率提高。与NWC和FU相比, MNWD氮肥回收率平均提高8.07%~11.99%和20.72%~30.78%, 农学利用率平均提高17.44%~27.38%和96.47%~101.42%, 灌溉水生产效率平均提高23.34%~36.67%和76.54%~117.38%, 水分生产效率平均提高8.41%~17.66%和32.23%~65.29%。

关键词: 水稻, 水肥“三匀”技术;, 产量, 水分生产效率, 氮肥利用效率

Abstract:

This study included three split-plot designed experiments. Experiments 1 and 2 were conducted in two fields with varied soil fertility and consistent treatment. Two rice varieties (Dexiang 4103, high NUE; Yixiang 3724, low NUE) were set as main plot. The sub-plot contained six nitrogen-water management modes (farmer’s usual management, FU; nitrogen-water coupling management, NWC; methodical nitrogen-water distribution management, MNWD; and their respective nitrogen-free controls). The main plot of Exp.3 was two high NUE varieties (Dexiang 4103, Fyou 498) and two low NUE varieties (Yixiang 3724, Chuanyou 6203); FU, NWC, and MNWD assembled the sub-plot. MNWD adopted the method of increasing frequency and reducing quantity, thus the nitrogen application rate was reduced by 20% compared with NWC and FU, the irrigation water amount was reduced by 20% to 25% compared with NWC, and 42% to 48% compared with FU. The stem number of MNWD changed smoothly and its ear bearing tiller percentage was higher. Compared with NWC and FU, the photo assimilation before anthesis MNWD had less, dry matter transportation before anthesis and high accumulation of assimilate after anthesis. The grain yield of MNWD was similar to that of NWC, while 8.77%-14.18% higher than that of FU. Correlation analysis showed that the dry weight of roots in 10-20 cm and 20-30 cm soil layers were significantly and positively correlated with nitrogen recovery efficiency (NRE), nitrogen agronomy efficiency (NAE), irrigation water production efficiency (IWPE) and water production efficiency (WPE). MNWD had a large amount of root system distributed in the soil layer below 10 cm, which was conducive to the improvement of water and nitrogen utilization efficiency. Compared with NWC and FU, MNWD increased NRE by 8.07%-11.99% and 20.72%-30.78%, NAE by 17.44%-27.38% and 96.47%-101.42%, IWPE by 23.34%-36.67% and 76.54%-117.38%, WPE by 8.41%-17.66% and 32.23%-65.29%, respectively.

Key words: rice, methodical nitrogen-water distribution management, grain yield, water use efficiency, nitrogen use efficiency

表1

两个试验点水稻生长期间气象条件"

地点
Location
年份
Year
全生育期降雨量
Total rainfall of WGS
(mm)
全生育期日照时数
Total sunshine hours of WGS
(h)
全生育期日平均温度
Average diurnal temperature of WGS (℃)
温江 Wenjiang 2015 538.8 630.3 22.32
涪城 Fucheng 2017 426.0 757.3 23.88

表2

2015年和2017年耕层土壤养分含量表"

试验
Experiment
有机质
Organic matter (g kg-1)
全氮
Total N (g kg-1)
速效氮
Available N (mg kg-1)
速效磷
Available P (mg kg-1)
速效钾
Available K (mg kg-1)
试验1 Exp.1 16.57 1.47 76.46 14.42 79.13
试验2 Exp.2 26.41 2.03 109.65 29.57 110.48
试验3 Exp.3 22.08 1.79 100.33 21.83 98.36

表3

水氮管理模式"

水氮管理模式
Nitrogen-water
management mode
氮肥管理
Nitrogen management
水分管理
Water management
农民习惯模式
FU
150 kg hm-2 N按m: m=7 : 3分别于移栽前1 d和移栽后7 d施用。
150 kg hm-2 of N fertilizer was applied according to the ratio of m (basal fertilizer) : m (tillering fertilizer) = 7 : 3, at 1 d before and 7 d after transplanting.
淹水灌溉: 水稻移栽后田面一直保持1~3 cm水层, 收获前1周自然落干。
Flood irrigation: after rice transplanting, a 1-3 cm water layer was always maintained above the surface of the paddy fields and dried naturally at 1 week before harvest.
农民习惯模式对照
CTF
水稻季不施 N。
No N was applied in rice season.
淹水灌溉。
Flood irrigation.
水肥耦合模式
NWC
150 kg hm-2 N按m:m:m=3 : 3 : 4分别于移栽前1 d、移栽后7 d、倒四叶及倒二叶期(穗肥分2次)施用。
150 kg hm-2 of N fertilizer was applied according to the ratio of m (base fertilizer) : m (tillering fertilizer) : m (panicle fertilizer) = 3 : 3 : 4, at 1 d before and 7 d after transplanting, and at the reciprocal 4th and 2nd leaf stages (panicle fertilizer was divided into 2 portions).
控制性灌溉: 浅水(1 cm左右)栽秧, 移栽后5~7 d田间保持2 cm水层确保秧苗返青成活, 之后至孕穗前田面不保持水层, 土壤含水量为饱和含水量的70%~80%, 无效分蘖期晒田; 孕穗期土表保持1~3 cm水层; 抽穗至成熟期采用灌透水、自然落干至土壤水势为-25 kPa时再灌水。
Controlled irrigation: transplanting was done in shallow water (~1 cm), a 2 cm water layer was maintained in the fields to 5-7 d after transplanting to ensure that the seedlings turned green and survival, after that, drained surface water and maintained a soil moisture of 70%-80% of saturated water content before booting stage, the fields were dried during the ineffective tillering stage, a 1-3 cm water layer was maintained above the soil surface during the booting stage, and performed alternate wetting and drying irrigation from heading to maturity (irrigated to 1-3 cm water and dried naturally to the soil water potential of -25 kPa).
水肥耦合模式对照
CTN
水稻季不施N。
No N was applied in rice season.
控制性灌溉。
Controlled irrigation.
水肥“三匀”模式
MNWD
15、15、30、15、15、15和 15 kg hm-2 (合计120 kg hm-2) N分别于移栽后 7、14、35、49、56、70和 77 d施用。
15, 15, 30, 15, 15, 15, and 15 kg hm-2 (total 120 kg hm-2) of N fertilizer were applied at 7, 14, 35, 49, 56, 70, and 77 d after transplanting.
“匀水”管理: 浅水(1 cm左右)栽秧, 随后利用水肥一体化设备将施肥与灌水同步进行, 若灌水施肥时田面有水层则灌水量以水面升高1 cm左右为宜, 若灌水施肥时田面无水层则灌水至土壤饱和即可; 非施肥时间段若田面裂口超过2 cm亦补灌至土壤饱和。
Uniform water management: transplanting was done in shallow water (~1 cm), nitrogen-water synchronization equipment was used to fertilize and irrigate the fields simultaneously, if there was already a water layer in the fields, the amount of irrigation water applied increased the layer by ~1 cm. If there was no existing water layer, irrigation was done until soil saturation, during non-fertilizing periods, irrigation water was replenished until soil saturation whenever the fields’ surface cracks larger than 2 cm appeared.
水肥“三匀”模式对照
CTM
水稻季不施 N。
No N was applied in rice season.
“匀水”管理。
Uniform water management.

表4

水氮管理对不同氮效率水稻产量及物质生产转运的影响(温江, 2015)"

试验Experiment 因素
Factor
处理
Treatment
花前干物质积累
DMBF
(kg hm-2)
花后干物质积累
DMAF
(kg hm-2)
总干物质积累
TDM
(kg hm-2)
花前物质转运
TDMBF
(kg hm-2)
收获指数
HI
(%)
产量
Yield
(kg hm-2)
试验1
Exp.1
(低肥力
土壤 Low fertility soil)
品种
Cultivar (C)
D4103 9730 a 4504 a 14234 a 2828 a 51.89 a 8476 a
Y3724 8352 b 4079 a 12431 b 2266 a 51.40 a 7335 b
氮肥管理
Nitrogen
management (N)
CTF 7169 d 4116 c 11285 c 1788 d 52.31 bc 6826 c
FU 10608 c 3870 cd 14478 b 3593 a 51.52 c 8627 b
CTN 7112 d 3471 d 10583 d 2267 c 54.19 a 6633 cd
NWC 11672 a 4880 b 16523 a 3321 a 49.56 d 9481 a
CTM 6425 e 4089 c 10514 d 1518 d 53.36 ab 6482 d
MNWD 11262 b 5322 a 16584 a 2795 b 48.94 d 9384 a
F
F-value
C 627.67** 7.50NS 109.66** 12.21* 0.39NS 1857.57**
N 709.04** 24.34** 619.84** 41.51** 14.19** 453.60**
N*C 4.63** 0.37NS 1.52NS 1.00NS 0.51NS 0.88 NS
试验2
Exp.2
(高肥力
土壤 High fertility soil)

品种
Cultivar (C)
D4103 10975 a 5605 a 16570 a 2697 a 51.41 a 9598 a
Y3724 9572 b 4760 b 14332 b 2575 a 50.42 a 8479 b
氮肥管理
Nitrogen
management (N)
CTF 8220 c 4542 d 12762 d 2103 c 52.18 a 7683 d
FU 11438 b 4376 d 15814 b 3666 a 50.88 ab 9297 b
CTN 8414 c 4690 cd 13104 cd 2170 bc 52.34 a 7930 c
NWC 12832 a 5811 b 18643 a 3383 a 49.35 bc 10629 a
CTM 8138 c 5199 c 13337 c 1789 c 52.42 a 8078 c
MNWD 12570 a 6477 a 19047 a 2705 b 48.30 c 10615 a
F
F-value
C 10239.23** 34.95* 274.65** 1.04NS 4.68NS 168.41**
N 551.69** 17.95** 403.04** 16.38** 9.54** 264.27**
N*C 1.93NS 1.80NS 4.26** 1.37NS 1.32NS 1.24NS

表5

水氮管理对不同氮效率水稻产量及物质生产转运的影响(试验3: 涪城, 2017)"

因素
Factor
处理
Treatment
花前干物质积累
DMBF
(kg hm-2)
花后干物质积累
DMAF
(kg hm-2)
总干物质积累
TDM
(kg hm-2)
花前物质转运
TDMBF
(kg hm-2)
收获指数
HI
(%)
产量
Yield
(kg hm-2)
品种
Cultivar (C)
D4103 12050 a 5682 a 17732 a 3457 a 51.57 a 10565 a
F498 12173 a 5668 a 17441 a 3513 a 52.72 a 10613 a
Y3724 10525 b 4733 b 15258 b 3264 a 52.47 a 9245 b
C6203 10437 b 4810 b 15247 b 3200 a 52.55 a 9261 b
氮肥管理
Nitrogen
management (N)
FU 10635 c 4297 c 14932 c 3579 a 52.78 a 9105 b
NWC 11811 a 5137 b 16948 b 3758 a 52.49 a 10283 a
MNWD 11443 b 5936 a 17389 a 3039 b 51.72 a 10375 a
F
F-value
C 21.36** 6.11** 23.52** 1.53NS 0.51NS 31.53**
N 39.40** 1.33NS 18.92** 0.85NS 0.37NS 28.11**
N*C 0.19NS 0.05NS 0.08NS 0.12NS 0.26NS 0.32NS

图1

不同氮效率水稻差异型水氮管理条件下茎蘖动态(温江, 2015) 缩写同表4。"

图2

不同氮效率水稻差异型水氮管理条件下茎蘖动态(涪城, 2017) F498: F优498; C6203: 川优6203。 缩写同表4。"

图3

不同氮效率水稻差异型水氮管理条件下根系生长及分布(温江, 2015) 缩写同表4和图2。"

图4

不同氮效率水稻差异型水氮管理条件下根系生长及分布(涪城, 2017) 缩写同表4和图2。"

表6

水氮管理对不同氮效率水稻氮素积累及氮肥利用的影响"

因素
Factor
处理
Treatment
试验1 Exp.1 试验2 Exp.2 试验3 Exp.3
总吸氮量
TNA
(kg hm-2)
氮肥回收
率 NRE
(%)
氮肥农学利
用率NAE
(kg kg-1)
总吸氮量
TNA
(kg hm-2)
氮肥回收
率 NRE
(%)
氮肥农学利
用率NAE
(kg kg-1)
总吸氮量
TNA
(kg hm-2)
品种
Cultivar (C)
D4103 150.65 a 51.56 a 19.07 a 171.06 a 48.60 a 17.40 a 202.35 a
F498 200.31 a
Y3724 140.71 b 48.53 a 17.72 a 158.77 b 42.94 a 15.87 a 173.82 b
C6203 173.11 b
氮肥管理
Nitrogen
management
(N)
CTF 108.42 d 126.39 d
FU 176.20 b 45.18 b 12.01 c 185.65 b 39.51 c 10.76 c 175.50 c
CTN 110.59 cd 135.39 d
NWC 186.25 a 50.44 a 18.99 b 204.64 a 46.14 b 18.00 b 196.73 a
CTM 113.60 c 137.67 c
MNWD 179.01 b 54.51 a 24.19 a 199.69 a 51.67 a 21.14 a 189.96 b
F
F-value
C 94.74** 4.67NS 3.94NS 408.63** 13.62NS 0.68NS 173.71**
N 39.00** 9.74** 85.00** 179.92** 14.72** 48.79** 60.55**
N*C 0.57NS 0.08NS 0.82NS 0.79NS 0.68NS 0.30NS 1.42NS

图5

不同氮效率水稻差异型水氮管理条件下灌水量及水分利用(温江, 2015) 缩写同表4和图2。"

图6

不同氮效率水稻差异型水氮管理条件下灌水量及水分利用(涪城, 2017) 缩写同表4和图2。"

表7

各土层根干重与氮素积累及水、氮利用的相关性"

试验
Experiment
时期
Stage
土层深度
DS
总吸氮量
TNA
氮肥回收率
NRE
氮肥农学利用率
NAE
灌溉水生产效率
IWPE
水分生产效率
WPE
试验1
Exp.1
拔节期
Jointing stage
0-10 cm 0.22NS 0.33NS 0.17NS 0.28NS 0.34NS
10-20 cm 0.25NS 0.77** 0.84** 0.85** 0.81**
20-30 cm 0.13NS 0.79** 0.96** 0.96** 0.88**
0-30 cm 0.27NS 0.62** 0.54* 0.64** 0.66**
抽穗期
Heading stage
0-10 cm 0.20NS 0.27NS 0.35NS 0.39NS 0.46NS
10-20 cm 0.30NS 0.65** 0.64** 0.71** 0.71**
20-30 cm 0.24NS 0.61** 0.76** 0.85** 0.80**
0-30 cm 0.29NS 0.52* 0.61** 0.68** 0.72**
试验2
Exp.2
拔节期
Jointing stage
0-10 cm 0.61** 0.52* 0.45NS 0.38NS 0.45NS
10-20 cm 0.70** 0.78** 0.86** 0.91** 0.92**
20-30 cm 0.51* 0.82** 0.86** 0.97** 0.91**
0-30 cm 0.73** 0.72** 0.69** 0.66** 0.71**
抽穗期
Heading stage
0-10 cm 0.63** 0.55* 0.39NS 0.48* 0.54*
10-20 cm 0.67** 0.72** 0.81** 0.80** 0.83**
20-30 cm 0.51* 0.70** 0.68** 0.83** 0.81**
0-30 cm 0.71** 0.67** 0.57* 0.66** 0.71**
试验3
Exp.3
拔节期
Jointing stage
0-10 cm 0.80** 0.54** 0.62**
10-20 cm 0.63** 0.88** 0.90**
20-30 cm 0.42* 0.98** 0.96**
0-30 cm 0.81** 0.73** 0.79**
抽穗期
Heading stage
0-10 cm 0.72** 0.63** 0.69**
10-20 cm 0.71** 0.81** 0.85**
20-30 cm 0.63** 0.85** 0.86**
0-30 cm 0.75** 0.73** 0.78**
[1] Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B . Closing yield gaps for rice self-sufficiency in China. Nat Commun, 2019,10:1725.
[2] 凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌励 . 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993,26(6):1-11.
Ling Q H, Zhang H C, Cai J Z, Su Z F, Ling L . Investigation on the population quality of high yield and its optimizing control programme in rice. Sci Agric Sin, 1993,26(6):1-11 (in Chinese with English abstract).
[3] 邹应斌, 黄见良, 屠乃美, 李合松, 黄升平, 张杨珠 . “旺壮重”栽培对双季杂交稻产量形成及生理特性的影响. 作物学报, 2001,27:343-350.
Zou Y B, Huang J L, Tu N M, Li H S, Huang S P, Zhang Y Z . Effects of the VSW cultural method on yield formation and physiological characteristics in double cropping hybrid rice. Acta Agron Sin, 2001,27:343-350 (in Chinese with English abstract).
[4] 蒋鹏, 黄敏, Md. Ibrahim, 曾燕, 夏冰, 施婉菊, 谢小兵, 邹应斌. “三定”栽培对双季超级稻养分吸收积累及氮肥利用率的影响. 作物学报, 2011,37:2194-2207.
Jiang P, Huang M, Ibrahim M, Zeng Y, Xia B, Shi W J, Xie X B, Zou Y B . Effects of “sanding” cultivation method on nutrient uptake and nitrogen use efficiency in double cropping super rice. Acta Agron Sin, 2011,37:2194-2207 (in Chinese with English abstract).
[5] 张洪程, 郭保卫, 陈厚存, 周兴涛, 张军, 朱聪聪, 陈京都, 李桂云, 吴中华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 杨雄 . 水稻有序摆、抛栽的生理生态特征及超高产形成机制. 中国农业科学, 2013,46:463-475.
Zhang H C, Guo B W, Chen H C, Zhou X T, Zhang J, Zhu C C, Chen J D, Li G Y, Wu Z H, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Yang X . Eco-physiological characteristics and super high yield formation mechanism of ordered transplanting and optimized broadcasting rice. Sci Agric Sin, 2011,37:2194-2207 (in Chinese with English abstract).
[6] 汪仁全, 马均, 童平, 张荣萍, 李艳, 傅泰露, 吴合洲, 刘志彬 . 三角形强化栽培技术对水稻光合生理特性及产量形成的影响. 杂交水稻, 2006,21(6):60-65.
Wang R Q, Ma J, Tong P, Zhang R P, Li Y, Fu T L, Wu H Z, Liu Z B . Effects of planting method of triangle of system of rice intensification (TSRI) on photosynthetic characteristics and formation of grain yield. Hybrid Rice, 2006,21(6):60-65 (in Chinese with English abstract).
[7] 薛超, 周宏 . 污染排放约束下中国水稻生产用水效率与影响因素分析. 水资源保护, 2018,34(3):52-56.
Xue C, Zhou H . Analysis on rice production water use efficiency and its influencing factors in China under constraint of pollutant emission. Water Resour Prot, 2018,34(3):52-56 (in Chinese with English abstract).
[8] 王杰飞, 朱潇, 沈健林, 曾冠军, 王娟, 吴金水, 李勇 . 亚热带稻区大气氨/铵态氮污染特征及干湿沉降. 环境科学, 2017,38:2264-2272.
Wang J F, Zhu X, Shen J L, Zeng G J, Wang J, Wu J S, Li Y . Atmospheric ammonia/ammonium-nitrogen concentrations and wet and dry deposition rates in a double rice region in subtropical China. Environ Sci, 2017,38:2264-2272 (in Chinese with English abstract).
[9] Wang J, Fu P, Wang F, Fahad S, Mohapatra P K, Chen Y T, Zhang C D, Peng S B, Cui K H, Nie L X, Huang J L, . Optimizing nitrogen management to balance rice yield and environmental risk in the Yangtze River’s middle reaches. Environ Sci Pollut Res, 2019,26:4901-4912.
[10] 孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均 . 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014,40:1639-1649.
Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jiang M J, Ma J . Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014,40:1639-1649 (in Chinese with English abstract).
[11] 彭玉, 孙永健, 蒋明金, 徐徽, 秦俭, 杨志远, 马均 . 不同水分条件下缓/控释氮肥对水稻干物质量和氮素吸收、运转及分配的影响. 作物学报, 2014,40:859-870.
Peng Y, Sun Y J, Jiang M J, Xu H, Qin J, Yang Z Y, Ma J . Effects of water management and slow/controlled release nitrogen fertilizer on biomass and nitrogen accumulation, translocation, and distribution in rice. Acta Agron Sin, 2014,40:859-870 (in Chinese with English abstract).
[12] 李娜, 杨志远, 代邹, 孙永健, 徐徽, 何艳, 蒋明金, 严田蓉, 郭长春, 马均 . 水氮管理对不同氮效率水稻根系性状、氮素吸收利用及产量的影响. 中国水稻科学, 2017,31:500-512.
Li N, Yang Z Y, Dai Z, Sun Y J, Xu H, He Y, Jiang M J, Yan T R, Guo C C, Ma J . Effects of water-nitrogen management on root traits, nitrogen accumulation and utilization and grain yield in rice with different nitrogen use efficiency. Chin J Rice Sci, 2017,31:500-512 (in Chinese with English abstract).
[13] Huang J, He F, Cui K, Buresh R J, Xu B, Gong W H, Peng S B . Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res, 2008,105:70-80.
[14] Xiong D L, Chen J, Yu T T, Gao W L, Ling X X, Li Y, Peng S B, Huang J L . SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci Rep, 2015,5:13389.
[15] Miao Y, Stewart B A, Zhang F . Long-term experiments for sustainable nutrient management in China: a review. Agron Sustain Dev, 2011,31:397-414.
[16] Huang L Y, Yang D S, Li X X, Peng S B, Wang F . Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res, 2019,233:49-58.
[17] 韦还和, 孟天瑶, 李超, 张洪程, 史天宇, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫 . 甬优籼粳杂交稻花后干物质积累模型与特征分析. 作物学报, 2016,42:265-277.
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, X K, Wei H Y, Guo B W . Dynamic model and its characteristics analysis for dry matter production after heading of indica/japonica hybrid rice of Yongyou series. Acta Agron Sin, 2016,42:265-277 (in Chinese with English abstract).
[18] 许轲, 郭保卫, 张洪程, 周兴涛, 陈厚存, 张军, 陈京都, 朱聪聪, 李桂云, 吴中华, 戴其根, 霍中洋, 魏海燕, 高辉, 曹利强, 李明银 . 有序摆抛栽对超级稻超高产与光合生产力的影响及水稻超高产模式探索. 作物学报, 2013,39:1652-1667.
Xu K, Guo B W, Zhang H C, Zhou X T, Chen H C, Zhang J, Chen J D, Zhu C C, Li G Y, Wu Z H, Dai Q G, Huo Z Y, Wei H Y, Gao H, Cao L Q, Li M Y . Effect of ordered transplanting and optimized broadcasting on super high yield and photosynthetic productivity and exploration of rice super high yield model. Acta Agron Sin, 2013,39:1652-1667 (in Chinese with English abstract).
[19] 杨志远, 胡蓉, 孙永健, 徐徽, 许远明, 马均 . 三角形强化栽培模式下氮肥运筹对II优498产量及氮肥利用的影响. 作物学报, 2012,38:1097-1106.
Yang Z Y, Hu R, Sun Y J, Xu H, Xu Y M, Ma J . Effects of nitrogen fertilizer management on yield and nitrogen use efficiency of Eryou 498 in triangle-planted system of rice intensification. Acta Agron Sin, 2012,38:1097-1106 (in Chinese with English abstract).
[20] 凌启鸿, 苏祖芳, 张海泉 . 水稻成穗率与群体质量的关系及其影响因素的研究. 作物学报, 1995,21:463-469.
Ling Q H, Su Z F, Zhang H Q . Relationship between earbearing tiller percentage and population quality and its influential factors in rice. Acta Agron Sin, 1995,21:463-469 (in Chinese with English abstract).
[21] 蒋彭炎, 洪晓富, 冯来定, 马跃芳, 史济林, 倪竹如, 刘智宏 . 水稻中期群体成穗率与后期群体光合效率的关系. 中国农业科学, 1994,27(6):8-14.
Jiang P Y, Hong X F, Feng D L, Ma Y F, Shi J L, Ni Z R, Liu Z H . Relation between percentage of ear-bearing of colony in the middle phase and photosynthesis efficiency in the late in rice. Sci Agric Sin, 1994,27(6):8-14 (in Chinese with English abstract).
[22] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海 . 水稻甬优12产量13.5 t hm -2以上超高产群体的生育特征 . 作物学报, 2014,40:2149-2159.
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H . Population characteristics for super-high yielding hybrid rice Yongyou 12 ( >13.5 t ha -1 ) . Acta Agron Sin, 2014,40:2149-2159 (in Chinese with English abstract).
[23] 张洪程, 吴桂成, 李德剑, 肖跃成, 龚金龙, 李杰, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 周有炎, 王宝金, 吴爱国 . 杂交粳稻13.5 t hm -2超高产群体动态特征及形成机制的探讨 . 作物学报, 2010,36:1547-1558.
Zhang H C Wu G C, Li D J, Xiao Y C, Gong J L, Li J, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Sha A Q, Zhou Y Y, Wang B J, Wu A G . Population characteristeristics and formation mechanism for super-high-yielding hybrid japonica rice (13.5 t ha -1). Acta Agron Sin , 2010,36:1547-1558 (in Chinese with English abstract).
[24] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌 . 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响. 作物学报, 2018,44:554-568.
Xu Y J, Xu Y D, Li Y Y, Qian X Y, Wang Z Q, Yang J C . Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice. Acta Agron Sin, 2018,44:554-568 (in Chinese with English abstract).
[25] 徐国伟, 陆大克, 孙会忠, 王贺正, 李友军 . 干湿交替灌溉与施氮耦合对水稻根际环境的影响. 农业工程学报, 2017,33:186-194.
Xu G W, Lu D K, Sun H Z, Wang H Z, Li Y J,. Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment of rice. Trans CSAE, 2017,33:186-194 (in Chinese with English abstract).
[26] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌 . 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016,42:1026-1036.
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C . Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016,42:1026-1036 (in Chinese with English abstract).
[27] 曹娜, 王睿, 廖婷婷, 陈诺, 郑循华, 姚志生, 张海, Klaus B B. 厌氧条件下砂壤水稻土N2、N2O、NO、CO2和CH4排放特征. 环境科学, 2015,36:3373-3382.
Cao N, Wang R, Liao T T, Chen N, Zheng X H, Yao Z S, Zhang H, Klaus B B . Characteristics of N2, N2O, NO, CO2 and CH4 emissions in anaerobic condition from sandy loam paddy soil. Environ Sci, 2015,36:3373-3382 (in Chinese with English abstract).
[28] Tan X Z, Shao D G, Gu W Q . Effects of temperature and soil moisture on gross nitrification and denitrification rates of a Chinese lowland paddy field soil. Paddy Water Environ, 2018,16:687-698.
[1] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[2] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[3] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[4] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[5] 叶夕苗,程鑫,安聪聪,袁剑龙,余斌,文国宏,李高峰,程李香,王玉萍,张峰. 马铃薯产量组分的基因型与环境互作及稳定性[J]. 作物学报, 2020, 46(3): 354-364.
[6] 丁永刚, 李福建, 王亚华, 汤小庆, 杜同庆, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(04): 544-556.
[7] 卫平洋, 裘实, 唐健, 肖丹丹, 朱盈, 刘国栋, 邢志鹏, 胡雅杰, 郭保卫, 高尚勤, 魏海燕, 张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(04): 571-585.
[8] 罗俊, 林兆里, 李诗燕, 阙友雄, 张才芳, 杨仔奇, 姚坤存, 冯景芳, 陈建峰, 张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(04): 596-613.
[9] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(04): 614-630.
[10] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[11] 赵伟,甄天悦,张子山,徐铮,高大鹏,丁聪,刘鹏,李耕,宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量[J]. 作物学报, 2020, 46(02): 249-258.
[12] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[13] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[14] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[15] 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[8] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[9] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[10] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .