欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (4): 596-613.doi: 10.3724/SP.J.1006.2020.94102

• 耕作栽培·生理生化 • 上一篇    下一篇

不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响

罗俊1,林兆里1,李诗燕1,阙友雄1,张才芳1,杨仔奇1,姚坤存1,冯景芳1,陈建峰2,张华1,*()   

  1. 1 福建农林大学 / 农业农村部福建甘蔗生物学与遗传育种重点实验室, 福建福州 350002
    2 来宾市利拓农业服务有限公司, 广西来宾 546100
  • 收稿日期:2019-07-19 接受日期:2019-09-26 出版日期:2020-04-12 发布日期:2019-10-11
  • 通讯作者: 张华 E-mail:zhanghua4553@sina.com
  • 作者简介:E-mail: sisluojun@126.com
  • 基金资助:
    本研究由福建农林大学科技创新专项(CXZX2017345);国家公益性行业(农业)科研专项(201503119-04-01);国家现代农业产业技术体系建设专项(CARS-17);国家甘蔗工程技术研究中心开放课题基金资助(2016-3-1);国家甘蔗工程技术研究中心开放课题基金资助(2017-2-1)

Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field

LUO Jun1,LIN Zhao-Li1,LI Shi-Yan1,QUE You-Xiong1,ZHANG Cai-Fang1,YANG Zai-Qi1,YAO Kun-Cun1,FENG Jing-Fang1,CHEN Jian-Feng2,ZHANG Hua1,*()   

  1. 1 Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2 Lituo Agricultural Services Co. Ltd., Laibin 546100, Guangxi, China
  • Received:2019-07-19 Accepted:2019-09-26 Online:2020-04-12 Published:2019-10-11
  • Contact: Hua ZHANG E-mail:zhanghua4553@sina.com
  • Supported by:
    This study was supported by the Science Foundation of Fujian Agriculture and Forestry University(CXZX2017345);the Special Fund for Agro-scientific Research in the Public Interest of China(201503119-04-01);the Earmarked Fund for China Agriculture Research System(CARS-17);the National Engineering Research Center of Sugarcane Open Fund(2016-3-1);the National Engineering Research Center of Sugarcane Open Fund(2017-2-1)

摘要:

探讨不同土壤改良措施对土壤物理性质、养分、微生物和甘蔗产量的影响, 对机械压实后酸性土壤改良策略的制定具有较为重要的意义。本研究设置添加松土精(B2)、添加生物菌肥(B3)、添加有机肥(B4)、添加生石灰(B5) 4种土壤改良处理, 以不添加土壤改良剂作为对照(B1), 连续2个作物季对蔗地土壤物理性质、养分、微生物和甘蔗产量构成等指标进行研究。结果表明, B4处理可显著降低土壤容重、紧实度、贯入阻力和抗剪强度, 提高土壤总孔隙度、通气孔隙度和毛孔孔隙度, 其固相容积率显著低于对照, 液相容积率显著高于对照, 土壤有机质含量、全氮含量得到显著提升, B2、B3处理紧实度和总孔隙度降低, 土壤物理性状得到一定改善, B5处理土壤pH值显著提升, 土壤酸性得到改善, B3、B5处理土壤有效磷含量得到显著提升。4种土壤改良措施土壤细菌和真菌Shannon指数、Chao1指数和ACE指数均高于对照, 均能提升土壤耕层细菌和真菌的物种多样性和物种丰富度, 降低土壤细菌中Proteobacteria (变形菌门)和Acidobacteria (酸杆菌门)的相对丰度、真菌中Basidiomycota (担子菌门)的相对丰度, 增加细菌中Actinobacteria (放线菌)和Chloroflexi (绿弯菌门)的相对丰度、真菌中Ascomycota (子囊菌门)的相对丰度, 并改变其他真菌群落组成。4种土壤改良措施均可不同程度地提高成熟期甘蔗有效茎数和单茎重, 从而增加甘蔗产量; 效果以添加有机肥最好, 生物菌肥其次。本研究为筛选适合改良和培肥机械压实酸性土壤措施, 提高甘蔗产量提供了科学依据。

关键词: 甘蔗, 蔗地, 土壤改良, 土壤物理性状, 产量, 微生物群落结构

Abstract:

Exploring the effects of different soil improvement measures on soil physical properties, soil nutrients, soil microorganisms and sugarcane yield is of great significance to make the improvement strategy for mechanically compacted acidic soil. In the present study, four soil improvement treatments including applications of loosening soil essence (B2), bacterial manure (B3), organic fertilizer (B4), and quicklime (B5) were set up, with no soil amendment as control (B1) to explore the physical properties, nutrients and microorganisms of soil and sugarcane yield components in two successive crop seasons. The application of organic fertilizer (B4) significantly reduced soil bulk density, soil compactness, soil penetration resistance and shear strength resistance and significantly improved total porosity, aeration porosity and pore porosity of soil. The solid-phase volume ratio of soil was significantly lower than that of control, while the liquid-phase volume ratio of soil was significantly higher than that of control, and the organic matter content and total nitrogen of soil were also significantly improved in B2 treatment. The soil compactness and total porosity of B2 and B3 treatments were reduced, improving the soil physical properties to some extent. The soil pH of B5 treatment was significantly improved. The soil available phosphorus content of B3 and B5 treatments was significantly increased. The Shannon index, Chao1 index, and ACE index of soil bacteria and fungi treated with B2, B3, B4, and B5 were higher than those of the control. The four soil improvement measures improved the species diversity and richness of bacteria and fungi in tilled soil layer, reduced the relative abundance of Proteus, Acidobacteria, and basidiomycetes increased the relative abundance of Actinomycetes, Curvularia and ascomycetes, and changed the composition of other fungal communities. These four soil improvement measures improved the number of effective stems and single stem quality of sugarcane at maturity stage to varying degrees, resulting in increased yield of sugarcane. Among them, the effect of organic fertilizer was the best, and followed by that of bacterial manure. This study provides a scientific basis for screening suitable measures to improve the fertility of the mechanically compacted acidic soil, and increase sugarcane yield.

Key words: sugarcane, sugarcane field, soil improvement, soil physical properties, yield, microbial community structures

表1

试验实施方案"

土壤改良处理
Soil amelioration treatment
实施方案
Implementation plan
N-K-P
(kg hm-2)
总投入水平
Total input level (Yuan hm-2)
对照
Control (B1)
基肥51% (17-17-17), 复合肥769 kg hm-2
Base fertilizer 51% (17-17-17), compound fertilizer 769 kg hm-2
130.73-130.73-130.73 2475
松土精
Loose soil essence (B2)
基肥51% (17-17-17), 复合肥769 kg hm-2, 增施高分子生物聚合物松土精9.23 kg hm-2
Base fertilizer 51% (17-17-17), compound fertilizer 769 kg hm-2, additional application of macromolecule biopolymer loosening soil essence 9.23 kg hm-2
130.73-130.73-130.73 3150
生物菌肥
Biological bacterial fertilizer (B3)
基肥51% (17-17-17), 复合肥769 kg hm-2, 增施有效活菌数 ≥ 50亿 g-1的生物菌肥30.8 kg hm-2
Base fertilizer 51% (17-17-17), compound fertilizer 769 kg hm-2, additional biological fertilizer with effective living bacteria number ( > 5 billion g-1) 30.8 kg hm-2
130.73-130.73-130.73 3525
有机肥
Organic fertilizer (B4)
基肥51% (17-17-17), 复合肥461 kg hm-2, 增施有机质 ≥ 56%, N-P-K (2.6-4.1-3.5)有机肥1277 kg hm-2
Base fertilizer 51% (17-17-17), compound fertilizer 461 kg hm-2, additional application of organic matter (>56%) and N-P-K (2.6-4.1-3.5) organic fertilizer 1277 kg hm-2
112.31-130.73-123.08 4410
生石灰
Quick lime (B5)
基肥51% (17-17-17), 复合肥769 kg hm-2, 增施生石灰1569 kg hm-2
Base fertilizer 51% (17-17-17), compound fertilizer 769 kg hm-2, additional application of quicklime 1569 kg hm-2
130.73-130.73-130.73 2925

表2

不同土壤改良措施对土壤容重和紧实度的影响"

土层
Soil layer
土壤改良措施
Soil improvement measure
土壤容重 Soil bulk density (g cm-3) 土壤紧实度 Soil compactness (N cm-2)
新植
New planting
宿根
Perennial root
新植
New planting
宿根
Perennial root
0-10 cm 对照 Control (B1) 1.06±0.10ab 1.00±0.07a 148.13±41.26a 127.69±30.31b
松土精 Loose soil essence (B2) 1.00±0.05ab 0.98±0.09a 124.94±32.48ab 113.45±45.04b
生物菌肥 Biological bacterial fertilizer (B3) 1.00±0.10abc 1.00±0.06a 109.40±26.86b 132.6±36.80ab
有机肥 Organic fertilizer (B4) 0.92±0.08c 0.95±0.08a 109.96±37.08b 117.86±36.70b
生石灰Quick lime(B5) 0.96±0.07bc 1.00±0.07a 143.52±29.88a 167.64±50.30a
10-20 cm 对照 Control (B1) 1.23±0.13a 1.12±0.11a 268.80±73.23a 176.25±63.21b
松土精 Loose soil essence (B2) 1.19±0.09a 1.07±0.08a 261.47±54.62ab 170.79±39.58b
生物菌肥 Biological bacterial fertilizer (B3) 1.19±0.11a 1.07±0.09a 207.39±38.46b 222.87±72.20ab
有机肥 Organic fertilizer (B4) 1.06±0.14b 1.02±0.10a 207.01±53.73b 172.84±60.37b
生石灰Quick lime(B5) 1.20±0.12a 1.05±0.11a 290.92±75.30a 260.81±68.30a
20-30 cm 对照 Control (B1) 1.37±0.10a 1.29±0.08ab 344.48±61.46b 301.88±30.72bc
松土精 Loose soil essence (B2) 1.34±0.13ab 1.24±0.11ab 331.18±65.45ab 298.68±33.66bc
生物菌肥 Biological bacterial fertilizer (B3) 1.37±0.10a 1.31±0.12a 302.69±44.68b 338.14±56.94ab
有机肥 Organic fertilizer (B4) 1.24±0.10b 1.17±0.16b 324.72±60.68b 257.20±35.27c
生石灰Quick lime(B5) 1.37±0.11a 1.32±0.14a 392.03±59.28a 348.55±64.48a
30-40 cm 对照 Control (B1) 1.36±0.10ab 1.36±0.09ab 330.36±77.54ab 328.53±47.43a
松土精 Loose soil essence (B2) 1.30±0.17ab 1.34±0.11ab 304.68±61.70b 317.03±51.17a
生物菌肥 Biological bacterial fertilizer (B3) 1.38±0.11a 1.35±0.07ab 310.43±66.98b 342.33±46.47a
有机肥 Organic fertilizer (B4) 1.24±0.13b 1.29±0.09b 323.96±64.28ab 327.11±17.38a
生石灰Quick lime(B5) 1.33±0.10ab 1.38±0.07a 382.35±39.98a 356.09±76.84a
平均 对照 Control (B1) 1.25±0.17a 1.19±0.17a 272.94±100.74b 233.59±99.48c
Average 松土精 Loose soil essence (B2) 1.21±0.18a 1.16±0.17a 255.57±98.67bc 224.99±103.00c
生物菌肥 Biological bacterial fertilizer (B3) 1.23±0.19a 1.18±0.18a 232.48±95.32c 258.98±104.29b
有机肥 Organic fertilizer (B4) 1.11±0.18b 1.11±0.17b 241.41±106.12c 218.76±93.23c
生石灰Quick lime (B5) 1.22±0.19a 1.19±0.20a 302.20±114.55a 283.27±102.00a
F 土层Soil layer (A) 256.15** 246.90** 189.36** 185.77**
F-value 土壤改良措施Soil improvement measures (B) 21.93** 9.16** 12.02** 11.95**
A×B 0.435 0.59 0.88 0.83

表3

不同土壤改良措施对土壤贯入阻力和抗剪强度的影响"

土层
Soil layer
土壤改良措施
Soil improvement measure
贯入阻力
Penetration resistance (kPa)
抗剪强度
Shear strength resistance (kg cm-2)
新植
New planting
宿根
Perennial root
新植
New planting
宿根
Perennial root
0-10 cm 对照 Control (B1) 13.53±4.74a 10.38±5.85ab 0.12±0.04b 0.07±0.02b
松土精 Loose soil essence (B2) 13.29±5.69a 9.38±4.55ab 0.11±0.03bc 0.07±0.03b
生物菌肥 Biological bacterial fertilizer (B3) 8.90±3.48b 11.97±5.69ab 0.09±0.02bc 0.08±0.02b
有机肥 Organic fertilizer (B4) 8.33±3.46b 7.02±5.09b 0.08±0.02c 0.06±0.02b
生石灰Quick lime (B5) 15.13±5.83a 13.58±4.46a 0.15±0.04a 0.11±0.02a
10-20 cm 对照 Control (B1) 25.63±8.46ab 20.39±4.01b 0.26±0.09ab 0.17±0.05ab
松土精 Loose soil essence (B2) 23.13±6.11ab 19.32±7.13b 0.23±0.06abc 0.16±0.06b
生物菌肥 Biological bacterial fertilizer (B3) 20.50±5.84b 24.53±10.30ab 0.21±0.08bc 0.21±0.11ab
有机肥 Organic fertilizer (B4) 19.53±6.30b 20.13±6.50b 0.17±0.07c 0.15±0.06b
生石灰Quick lime (B5) 28.25±8.45a 30.15±7.65a 0.29±0.08a 0.23±0.07a
20-30 cm 对照 Control (B1) 58.17±7.89ab 41.19±8.28bc 0.47±0.05ab 0.32±0.06bc
松土精 Loose soil essence (B2) 58.89±9.56ab 35.54±11.00c 0.46±0.06ab 0.31±0.06bc
生物菌肥 Biological bacterial fertilizer (B3) 54.41±6.74b 48.51±9.71ab 0.44±0.06bc 0.35±0.06ab
有机肥 Organic fertilizer (B4) 51.27±11.39b 35.47±9.34c 0.40±0.06c 0.27±0.05c
生石灰Quick lime (B5) 65.95±8.42a 53.55±12.17a 0.50±0.06a 0.39±0.05a
土层
Soil layer
土壤改良措施
Soil improvement measure
贯入阻力
Penetration resistance (kPa)
抗剪强度
Shear strength resistance (kg cm-2)
新植
New planting
宿根
Perennial root
新植
New planting
宿根
Perennial root
30-40 cm 对照 Control (B1) 61.17±7.66a 50.10±8.45b 0.51±0.04ab 0.41±0.05a
松土精 Loose soil essence (B2) 59.30±9.32a 51.28±8.90b 0.47±0.06b 0.38±0.06a
生物菌肥 Biological bacterial fertilizer (B3) 59.95±6.02a 56.89±10.99ab 0.52±0.05ab 0.43±0.06a
有机肥 Organic fertilizer (B4) 59.54±8.78a 54.86±6.47ab 0.49±0.06b 0.39±0.05a
生石灰Quick lime (B5) 64.32±5.88a 60.79±10.14a 0.56±0.05a 0.43±0.06a
平均 对照 Control (B1) 39.62±21.95b 30.52±17.55c 0.34±0.17b 0.24±0.14b
Average 松土精 Loose soil essence (B2) 38.65±22.53bc 28.88±18.54c 0.32±0.17b 0.23±0.14b
生物菌肥 Biological bacterial fertilizer (B3) 35.94±22.91cd 35.48±20.70b 0.31±0.19b 0.27±0.16a
有机肥 Organic fertilizer (B4) 34.67±23.22d 29.37±19.51c 0.28±0.18c 0.22±0.13b
生石灰Quick lime (B5) 43.41±23.84a 39.52±21.12a 0.37±0.18a 0.29±0.14a
F 土层Soil layer (A) 880.72** 234.91** 587.98** 497.5**
F-value 土壤改良措施Soil improvement measures (B) 13.63** 10.10** 14.67** 15.47**
A×B 0.64 1.20 0.83 0.68

表4

不同土壤改良措施对土壤孔隙度的影响"

土层/土壤改良措施
Soil layer/soil improvement measure
土壤孔隙度
Soil porosity
毛管孔隙度
Capillary porosity
通气孔隙度
Ventilation porosity
新植
New planting
宿根
Perennial root
新植
New planting
宿根
Perennial root
新植
New planting
宿根
Perennial root
0-10 cm
对照 Control (B1) 60.10±3.67c 62.16±2.62a 36.90±4.01b 37.75±3.33ab 23.20±4.62b 24.41±3.89a
松土精 Loose soil essence (B2) 62.25±2.02bc 62.86±3.47a 37.19±3.55ab 36.34±3.71b 25.07±2.82ab 26.52±3.01a
生物菌肥 Biological bacterial fertilizer (B3) 62.45±3.74abc 62.22±2.42a 36.94±3.56b 37.93±3.48ab 25.51±4.86ab 24.30±3.57a
有机肥 Organic fertilizer (B4) 65.34±3.04a 64.33±3.02a 40.47±3.72a 40.34±3.28a 24.87±3.49ab 23.99±3.07a
生石灰Quick lime (B5) 63.73±2.50ab 62.22±2.60a 36.05±2.93b 38.16±3.42ab 27.68±3.38a 24.06±5.15a
10-20 cm
对照 Control (B1) 53.71±4.92b 57.69±4.22a 38.08±3.06b 40.95±3.68a 15.63±6.47a 16.74±2.90a
松土精 Loose soil essence (B2) 55.17±3.33b 59.78±3.17a 40.81±2.70ab 39.53±4.04a 14.37±3.42a 20.26±2.51a
土层/土壤改良措施
Soil layer/soil improvement measure
土壤孔隙度
Soil porosity
毛管孔隙度
Capillary porosity
通气孔隙度
Ventilation porosity
新植
New planting
宿根
Perennial root
新植
New planting
宿根
Perennial root
新植
New planting
宿根
Perennial root
生物菌肥 Biological bacterial fertilizer (B3) 55.18±4.33b 59.56±3.49a 40.04±2.93ab 42.06±2.97a 15.14±4.54a 17.50±2.74a
有机肥 Organic fertilizer (B4) 60.07±5.29a 61.40±3.87a 42.01±4.94a 42.86±4.03a 18.06±4.72a 18.55±4.55a
生石灰Quick lime (B5) 54.72±4.62b 60.39±4.29a 38.79±2.68ab 41.02±3.01a 15.93±4.82a 19.37±4.12a
20-30 cm
对照 Control (B1) 48.12±3.90b 51.24±3.18ab 38.68±4.26a 39.80±2.60b 9.44±2.50ab 11.43±4.68a
松土精 Loose soil essence (B2) 49.58±5.01ab 53.34±4.26ab 39.45±3.99a 40.00±3.49b 10.14±3.78ab 13.34±2.83a
生物菌肥 Biological bacterial fertilizer (B3) 48.36±3.92b 50.64±4.52b 40.25±2.45a 40.62±2.21b 8.11±2.42b 10.02±3.41a
有机肥 Organic fertilizer (B4) 53.28±3.78a 55.76±6.07a 41.49±3.87a 43.50±3.04a 11.78±2.56a 12.27±4.70a
生石灰Quick lime (B5) 48.45±4.32b 50.24±5.11b 38.91±3.31a 40.07±2.86b 9.54±3.69ab 10.17±4.21a
30-40 cm
对照 Control (B1) 48.85±3.74ab 48.72±3.21ab 39.22±3.01a 40.21±2.06a 9.63±2.63ab 8.50±2.59a
松土精 Loose soil essence (B2) 50.94±6.35ab 49.62±3.96ab 40.37±3.43a 40.74±3.20a 10.57±3.78ab 8.88±2.51a
生物菌肥 Biological bacterial fertilizer (B3) 48.05±4.20b 48.92±2.73ab 40.29±2.11a 40.73±1.48a 7.76±2.98b 8.19±1.64a
有机肥 Organic fertilizer (B4) 53.08±4.92a 51.46±3.37a 42.24±3.10a 42.03±2.09a 10.84±2.59a 9.43±2.26a
生石灰Quick lime (B5) 49.69±3.70ab 48.06±2.60b 41.42±3.16a 40.04±1.72a 8.28±2.79ab 8.02±2.21a
平均Average
对照 Control (B1) 52.69±6.60b 54.95±6.28b 38.22±4.04b 39.68±3.05b 14.48±7.38b 15.27±7.13b
松土精 Loose soil essence (B2) 54.49±6.73b 56.40±6.53b 39.46±3.38b 39.15±3.89b 15.03±7.09ab 17.25±7.27a
生物菌肥 Biological bacterial fertilizer (B3) 53.51±7.21b 55.33±6.73b 39.38±3.26b 40.33±3.04b 14.13±8.20b 15.00±7.14b
有机肥 Organic fertilizer (B4) 57.94±6.75a 58.24±6.59a 41.56±4.20a 42.18±3.53a 16.39±6.93a 16.06±6.96ab
生石灰Quick lime (B5) 54.15±7.25b 55.22±7.38b 38.79±3.78b 39.82±3.49b 15.36±8.83ab 15.41±8.00b
FF-value
土层Soil layer (A) 255.89** 246.85** 17.18** 26.38** 161.94** 362.57**
土壤改良措施 Soil improvement measures (B) 21.91** 9.17** 11.58** 13.84** 1.81 3.51*
A×B 0.43 0.59 0.48 0.43 1.09 0.59

表5

不同土壤改良措施对土壤三相容积率的影响"

土层/土壤改良措施
Soil layer/soil improvement measure
固相容积率
Solid volume (%)
液相容积率
Liquid volume (%)
气相容积率
Gas volume (%)
新植
New planting
宿根
Perennial root
新植
New planting
宿根
Perennial root
新植
New planting
宿根
Perennial root
0-10 cm
对照 Control (B1) 39.90±3.67a 37.84±2.62a 21.46±2.67a 18.24±3.38ab 38.64±2.71a 43.92±2.89a
松土精 Loose soil essence (B2) 37.75±2.02ab 37.14±3.47a 22.05±3.67a 19.84±2.61ab 40.21±2.08a 43.02±2.59a
生物菌肥 Biological bacterial fertilizer (B3) 37.55±3.74abc 37.78±2.42a 21.19±2.83a 17.22±2.90b 41.25±2.08a 45.00±2.53a
有机肥 Organic fertilizer (B4) 34.66±3.04c 35.67±3.02a 24.03±3.84a 21.01±2.43a 41.32±1.47a 43.32±2.68a
生石灰Quick lime (B5) 36.27±2.50bc 37.78±2.60a 22.80±2.90a 17.44±3.30b 40.93±4.05a 44.78±4.45a
10-20 cm
对照 Control (B1) 46.29±4.92a 42.31±4.22a 23.29±2.45b 20.30±3.60b 30.42±5.70a 37.40±4.19a
松土精 Loose soil essence (B2) 44.83±3.33a 40.22±3.17a 23.77±3.76b 21.92±2.81ab 31.40±4.56a 37.86±1.26a
生物菌肥 Biological bacterial fertilizer (B3) 44.82±4.33a 40.44±3.49a 22.69±3.12b 20.27±2.38b 32.49±5.16a 39.29±4.53a
有机肥 Organic fertilizer (B4) 39.93±5.29b 38.60±3.87a 27.15±4.43a 23.24±2.21a 32.92±5.69a 38.16±3.60a
生石灰Quick lime (B5) 45.28±4.62a 39.61±4.29a 24.00±2.89b 21.05±1.71ab 30.72±3.91a 39.34±4.79a
20-30 cm
对照 Control (B1) 51.88±3.90a 48.77±3.18ab 22.91±5.14a 22.61±2.58ab 25.21±2.16a 28.63±3.94a
松土精 Loose soil essence (B2) 50.42±5.01ab 46.66±4.26ab 23.42±5.19a 23.14±2.89ab 26.17±3.03a 30.21±3.43a
生物菌肥 Biological bacterial fertilizer (B3) 51.64±3.92a 49.36±4.52a 23.04±3.13a 22.05±2.21b 25.32±3.43a 28.59±3.83a
有机肥 Organic fertilizer (B4) 46.72±3.78b 44.24±6.07b 26.91±5.14a 24.74±2.51a 26.37±2.72a 31.02±4.60a
生石灰Quick lime (B5) 51.55±4.32a 49.77±5.11a 23.46±4.46a 21.11±2.85b 24.99±3.69a 29.13±4.42a
30-40 cm
对照 Control (B1) 51.15±3.74ab 51.28±3.21ab 24.81±4.46a 23.12±2.91a 24.03±2.42a 25.60±3.05a
松土精 Loose soil essence (B2) 49.06±6.35ab 50.38±3.96ab 25.80±6.65a 23.94±4.00a 25.15±1.65a 25.69±3.35a
生物菌肥 Biological bacterial fertilizer (B3) 51.95±4.20a 51.09±2.73ab 24.84±3.58a 22.07±2.78a 23.21±2.76a 26.85±2.34a
有机肥 Organic fertilizer (B4) 46.92±4.92b 48.54±3.37b 28.31±5.84a 24.98±3.01a 24.76±2.46a 26.48±2.18a
生石灰Quick lime (B5) 50.31±3.70ab 51.94±2.60a 26.11±4.72a 22.19±2.58a 23.58±3.25a 25.87±1.69a
平均Average
对照 Control (B1) 47.31±6.60a 45.05±6.28a 23.12±4.17b 21.06±3.65bc 29.57±6.89b 33.89±8.18a
松土精 Loose soil essence (B2) 45.51±6.73a 43.60±6.53a 23.76±5.01b 22.21±3.41b 30.73±6.91ab 34.19±7.32a
生物菌肥 Biological bacterial fertilizer (B3) 46.49±7.21a 44.67±6.73a 22.94±3.35b 20.40±3.29c 30.57±8.06ab 34.93±8.38a
有机肥 Organic fertilizer (B4) 42.06±6.75b 41.76±6.59b 26.60±5.11a 23.49±2.92a 31.34±7.37a 34.74±7.42a
生石灰Quick lime (B5) 45.85±7.25a 44.78±7.38a 24.09±4.19b 20.45±3.41c 30.06±8.03ab 34.78±8.78a
FF-value
土层Soil layer (A) 255.88** 246.85** 70.82** 106.19** 501.98** 467.34**
土壤改良措施Soil improvement measures (B) 21.91** 9.17** 54.61** 36.52** 3.32* 1.11
A×B 0.43 0.59 0.10 0.26 0.43 0.60

表6

不同土壤改良措施对土壤养分的影响"

作物季/土壤改良措施
Crop season/soil improvement measure
pH值
pH value
有机质含量
Organic matter
(g kg-1)
全氮含量
Total nitrogen
(g kg-1)
有效磷含量
Available phosphorus
(mg kg-1)
速效钾含量
Available potassium
(mg kg-1)
新植New planting
对照 Control (B1) 3.57±0.13c 24.11±4.12ab 1.01±0.13ab 97.84±10.67bc 194.70±76.77a
松土精 Loose soil essence (B2) 3.76±0.25abc 24.74±2.64ab 1.02±0.17ab 138.84±78.99abc 205.80±74.75a
生物菌肥 Biological bacterial fertilizer (B3) 3.72±0.05bc 23.64±3.49b 1.01±0.17ab 152.01±57.51ab 229.38±79.64a
有机肥 Organic fertilizer (B4) 3.78±0.13ab 27.83±2.91a 1.17±0.14a 83.31±20.77c 202.40±68.44a
生石灰 Quick lime (B5) 3.94±0.14a 22.60±4.14b 0.91±0.04b 162.69±125.10a 224.42±82.59a
宿根Perennial root
对照 Control (B1) 3.63±0.03b 23.05±2.35b 1.51±0.23ab 188.62±55.87ab 181.23±37.84a
松土精 Loose soil essence (B2) 3.67±0.08b 25.80±3.81b 1.46±0.30ab 160.38±51.33ab 183.65±55.33a
生物菌肥 Biological bacterial fertilizer (B3) 3.65±0.06b 24.47±4.80b 1.50±0.23ab 210.69±70.20a 202.57±42.20a
有机肥 Organic fertilizer (B4) 3.68±0.08b 29.21±1.98a 1.60±0.17a 151.84±41.74b 205.88±59.27a
生石灰 Quick lime (B5) 5.44±1.04a 24.36±4.42b 1.42±0.20b 192.48±86.61ab 228.48±109.51a

表7

不同土壤改良措施对土壤微生物多样性的影响"

作物季
Crop season
土壤改良措施
Soil improvement measure
细菌Bacteria 真菌Fungus
Shannon Chao1 ACE Shannon Chao1 ACE
新植
New planting
对照 Control (B1) 7.55 1147.60 1150.41 5.20 738.15 759.55
松土精 Loose soil essence (B2) 8.12 1351.72 1373.42 6.18 872.67 883.80
生物菌肥 Biological bacterial fertilizer (B3) 8.26 1312.21 1347.08 6.87 747.16 763.55
有机肥 Organic fertilizer (B4) 8.26 1379.46 1381.89 6.29 915.97 915.18
生石灰Quick lime (B5) 8.07 1264.90 1293.00 6.54 836.45 860.54
宿根
Perennial root
对照 Control (B1) 7.05 889.40 893.31 5.03 543.11 556.02
松土精 Loose soil essence (B2) 7.02 1020.05 1028.39 7.20 825.94 823.88
生物菌肥 Biological bacterial fertilizer (B3) 6.95 1769.44 1185.88 6.17 737.33 710.86
有机肥 Organic fertilizer (B4) 7.37 1016.00 1005.66 7.15 768.67 779.98
生石灰Quick lime (B5) 6.97 1029.07 1049.07 7.21 795.11 788.68

图1

不同土壤改良处理对细菌和真菌群落组成的影响 A: 新植季不同土壤改良处理门水平细菌群落组成; B: 新植季不同土壤改良处理门水平真菌群落组成; C: 宿根季不同土壤改良处理门水平细菌群落组成; D: 宿根季不同土壤改良处理门水平真菌群落组成。B1: 对照; B2: 松土精; B3: 生物菌肥; B4: 有机肥; B5: 生石灰。"

表8

土壤改良措施对甘蔗产量性状的影响"

作物季
Crop season
土壤改良措施
Soil improvement measure
茎蘖数
Stem tiller number
(stem hm-2)
株高
Plant height
(cm)
茎径
Stem diameter
(cm)
单茎重
Single stem weight (kg stem-1)
有效茎数
Effective stem number (stem hm2)
蔗产量
Cane yield
(t hm-2)
蔗糖分
Sucrose content
(%)
新植
New planting
对照 Contrast (B1) 89966±7912b 230.67±11.53d 2.61±0.09a 1.24±0.09c 63664±5254c 78.65±9.18c 12.72±0.65a
松土精 Loose soil essence (B2) 91276±14324ab 247.42±10.01b 2.67±0.14a 1.38±0.16ab 64007±2097bc 88.53±10.19b 13.14±0.86a
生物菌肥 Biological bacterial fertilizer (B3) 93539±9303ab 257.25±8.13a 2.68±0.07a 1.45±0.10a 64263±4328bc 93.15±6.65ab 13.45±0.79a
有机肥 Organic fertilizer (B4) 102710±8543ab 252.00±8.21b 2.70±0.09a 1.43±0.10a 67170±4888ab 96.65±11.78a 12.86±0.86a
生石灰Quick lime(B5) 104100±12170a 241.08±3.73c 2.63±0.09a 1.31±0.09b 69736±4739a 91.21±6.78ab 13.32±0.80a
宿根
Perennial root
对照 Contrast (B1) 65415±5403b 245.01±15.86c 2.75±0.08b 1.45±0.15c 40576±1788c 58.94±7.05c 13.93±1.56a
松土精 Loose soil essence (B2) 64345±7518b 263.14±14.71b 2.83±0.04ab 1.66±0.10b 49341±838b 81.71±4.05b 14.31±0.97a
生物菌肥 Biological bacterial fertilizer (B3) 74765±4236a 284.10±10.22a 2.90±0.04a 1.88±0.08a 55327±3716a 103.87±7.97a 14.64±0.77a
有机肥 Organic fertilizer (B4) 71148±4715ab 282.74±10.50a 2.93±0.07a 1.90±0.15a 54771±2538a 104.23±9.29a 14.45±0.92a
生石灰Quick lime(B5) 67895±9782ab 259.87±8.95b 2.88±0.11a 1.69±0.13b 47802±2126b 80.71±5.53b 14.81±0.86a
[1] 臧英, 罗锡文 . 南方农业机械化新技术与新机具. 见: 纪念中国农业工程学会成立三十周年暨中国农业工程学会2009年学术年会(CSAE2009)论文集. 广州: 华南农业大学, 2009. pp 1-4.
Zang Y, Luo X W. New technologies and tools of agricultural mechanization in south China. In: Commemoration of the Thirtieth Anniversary of the Establishment of the Chinese Society of Agricultural Engineering and Collection of Papers of the 2009 Annual Conference of the Chinese Society of Agricultural Engineering (CSAE2009). Guangzhou: South China Agricultural University, 2009. pp 1-4(in Chinese).
[2] 罗俊, 张华, 邓祖湖, 阙友雄 . 用GGE双标图分析甘蔗品种性状稳定性及试点代表性. 应用生态学报, 2012,23:1319-1325.
Luo J, Zhang H, Deng Z H, Que Y X . Trait stability and test site representativeness of sugarcane varieties based on GGE-biplot analysis. Chin J Appl Ecol, 2012,23:1319-1325 (in Chinese with English abstract).
[3] 赵霓虹 . 加快推进崇左市甘蔗生产全程机械化的思考. 广西农业机械化, 2016, ( 3):13-14.
Zhao N H . Thoughts on speeding up mechanization of sugarcane production in Chongzuo. Agric Mechaniz Guangxi, 2016, ( 3):13-14 (in Chinese).
[4] 张华, 罗俊, 袁照年, 高三基, 杨颖颖, 林兆里 . 甘蔗机械化种植的农艺技术分析. 中国农机化学报, 2013,34(1):78-81.
Zhang H, Luo J, Yuan Z N, Gao S J, Yang Y Y, Lin Z L . Agronomic techniques to sugarcane mechanical seeding. J Chin Agric Mechaniz, 2013,34(1):78-81 (in Chinese with English abstract).
[5] 姬立平 . 寻路广东甘蔗生产机械化. 现代农业装备, 2016, ( 2):9-12.
Ji L P . Route-finding mechanization of sugarcane production in Guangdong Province. Modern Agric Equip, 2016, ( 2):9-12 (in Chinese).
[6] 谭俊杰 . 中国甘蔗生产成本结构分析及国际竞争力比较. 农业与技术, 2018,38(21):161-164.
Tan J J . Production cost structure analysis and international competitiveness comparison of sugarcane in China. Agric Technol, 2018,38(21):161-164 (in Chinese).
[7] 张华, 沈胜, 罗俊, 陈如凯 . 关于我国甘蔗机械化收获的思考. 中国农机化, 2009, ( 4):15-16.
Zhang H, Shen S, Luo J, Chen R K . Thinking of sugarcane harvest mechanization in China. Chin Agri Mechaniz, 2009, ( 4):15-16 (in Chinese with English abstract).
[8] 张华, 罗俊, 廖平伟, 郭伟 . 我国甘蔗机械化成本分析及机收效益评价模型的建立. 热带作物学报, 2010,31:1669-1673.
Zhang H, Luo J, Liao P W, Guo W . Sugarcane mechanization cost analysis and the establishment of a profit evaluation model. Chin J Trop Crop, 2010,31:1669-1673 (in Chinese with English abstract).
[9] 王小明, 覃逸明, 廖政达, 韦增林, 韦秀敏, 黄鸿锦, 韦喜 . 糖料蔗生产中土壤劣变原因、机制与治理对策综述. 江苏农业科学, 2018,46(21):6-11.
Wang X M, Tan Y M, Liao Z D, Wei Z L, Wei X M, Huang H J, Wei X . Summary of soil deterioration reasons, mechanisms and control measures in sugarcane production. Jiangsu Agric Sci, 2018,46(21):6-11 (in Chinese).
[10] 罗俊, 林兆里, 阙友雄, 李诗燕, 姚坤存, 姜永, 张华, 陈建峰 . 耕作深度对蔗地土壤物理性状及甘蔗产量的影响. 应用生态学报, 2019,30:405-412.
Luo J, Lin Z L, Que Y X, Li S Y, Yao K C, Jiang Y, Zhang H, Chen J F . Effect of subsoiling depths on soil physical properties and yield in sugarcane. Chin J Appl Ecol, 2019,30:405-412 (in Chinese with English abstract).
[11] 罗俊, 林兆里, 阙友雄, 张华, 李诗燕, 罗会, 张才芳, 陈建峰 . 不同耕整地方式对甘蔗耕层结构特性及产量的影响. 中国生态农业学报, 2018,26:824-836.
Luo J, Lin Z L, Que Y X, Zhang H, Li S Y, Luo H, Zhang C F, Chen J F . The influence of different tillage modes on layer structure characters and yield components in sugarcane. Chin J Eco-Agric, 2018,26:824-836 (in Chinese with English abstract).
[12] 庞书军 . 农业机械对环境的影响. 湖南农机, 2014, ( 11):56-64.
Pang S J . Environmental impact of agricultural machinery. Hunan Agric Machaniz, 2014, ( 11):56-64 (in Chinese).
[13] 于希宁, 韩伟杰 . 保护性耕作推进路径探讨. 中共青岛市委党校青岛行政学院学报, 2014, ( 3):72-76.
Yu X N, Han W J . Approach to promotion path of conservation tillage. J Qingdao Admin College, Party School Qingdao Municipal Committee CPC, 2014, ( 3):72-76 (in Chinese).
[14] Suman A, Suman A, Lal M, Singh A K . Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agron J, 2006,98:698-704.
[15] 彭东海, 杨建波, 李健, 邢永秀, 覃刘东, 杨丽涛, 李杨瑞 . 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响. 植物生态学报, 2014,38:959-969.
Peng D H, Yang J B, Li J, Xing Y X, Qin L D, Yang L T, Li Y R . Effects of intercropping with soybean on bacterial and nitrogen-fixing bacterial diversity in the rhizosphere of sugarcane. Chin J Plant Ecol, 2014,38:959-969 (in Chinese with English abstract).
[16] 郑普山, 郝保平, 冯悦晨, 丁玉川, 李屹峰, 薛志强, 曹卫东 . 不同盐碱地改良剂对土壤理化性质、紫花苜蓿生长及产量的影响. 中国生态农业学报, 2012,20:1216-1221.
Zheng P S, Hao B P, Feng Y C, Ding Y C, Li Y F, Xue Z Q, Cao W D . Effects of different saline-alkali land amendments on soil physicochemical properties and alfalfa growth and yield. Chin J Eco-Agric, 2012,20:1216-1221 (in Chinese with English abstract).
[17] 郭和蓉, 陈琼贤, 郑少玲, 严小龙 . 营养型酸性土壤改良剂对氮素吸收利用的影响. 华中农业大学学报, 2007,26(2):191-194.
Guo H R, Chen Q X, Zheng S L, Yan X L . The effect of nutritive soil modifier on nitrogen uptake and utilization in soil. J Huazhong Agric Univ, 2007,26(2):191-194 (in Chinese with English abstract).
[18] 许晓平, 汪有科, 冯浩, 赵西宁 . 土壤改良剂改土培肥增产效应研究综述. 中国农学通报, 2007,23(9):331-333.
Xu X P, Wang Y K, Feng H, Zhao X N . Research summary of the soil amendment’s effect on improving soil, cultivating fertilizer and increasing yield. Chin Agric Sci Bull, 2007,23(9):331-333 (in Chinese with English abstract).
[19] Habteselassie M Y, Miller B E, Thacker S G . Soil nitrogen and nutrient dynamics after repeated application of treated dairy-waste. Soil Sci Soc Am J, 2006,70:1328-1337.
[20] Jala S, Goyal D . Fly ash as a soil ameliorant for improving crop production: a review. Bioresour Technol, 2006,97:1136-1147.
[21] 董稳军, 徐培智, 张仁陟, 黄旭, 郑华平, 解开治 . 土壤改良剂对冷浸田土壤特性和水稻群体质量的影响. 中国生态农业学报, 2013,21:810-816.
Dong W J, Xu P Z, Zhang R Z, Huang X, Zheng H P, Xie K Z . Effects of soil amendments on soil properties and population quality of rice in cold waterlogged paddy field. Chin J Eco-Agric, 2013,21:810-816 (in Chinese with English abstract).
[22] 解开治, 徐培智, 严超, 张发宝, 陈建生, 唐拴虎, 黄旭, 顾文杰 . 不同土壤改良剂对南方酸性土壤的改良效果研究. 中国农学通报, 2009,25(20):160-165.
Xie K Z, Xu P Z, Yan C, Zhang F B, Chen J S, Tang S H, Huang X, Gu W J . Study the effects of soil improvement on acid soil in the south of China. Chin Agric Sci Bull, 2009,25(20):160-165 (in Chinese with English abstract).
[23] 童文杰, 邓小鹏, 徐照丽, 马二登, 晋艳, 李军营 . 不同耕作深度对土壤物理性状及烤烟根系空间分布特征的影响. 中国生态农业学报, 2016,24:1464-1472.
Tong W J, Deng X P, Xu Z L, Ma E D, Jin Y, Li J Y . Effect of plowing depth on soil physical characteristics and spatial distribution of root system of flue-cured tobacco. Chin J Eco-Agric, 2016,24:1464-1472 (in Chinese with English abstract).
[24] 舒秀丽, 赵柳, 孙学振, 平华, 潘立刚, 王晶 . 不同土壤改良剂处理对连作西洋参根际微生物数量、土壤酶活性及产量的影响. 中国生态农业学报, 2011,19:1289-1294.
Shu X L, Zhao L, Sun X Z, Ping H, Pan L G, Wang J . Effects of soil amendments on rhizosphere microbial number, soil enzyme activity and yield of continuous cropped American ginseng. Chin J Eco-Agric, 2011,19:1289-1294 (in Chinese with English abstract).
[25] Ma J F, Ryan P R, Delhaize E . Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci, 2001,6:273-278.
[26] Materechera S A, Mkhabela T S . The effectiveness of lime, chicken manure and leaf litter ash in ameliorating acidity in a soil previously under black wattle ( Acacia mearnsii) plantation. Bioresour Technol, 2002,85:9-16.
[27] 周文灵, 敖俊华, 张跃彬, 高三基, 邓军, 江永 . 施用有机土壤调理剂对土壤性质和甘蔗生长的影响. 农业科学, 2018,8:595-601.
Zhou W L, Ao J H, Zhang Y B, Gao S J, Deng J, Jiang Y . Effect of organic soil conditioner on soil properties and sugarcane growth. J Agric Sci, 2018,8:595-601 (in Chinese with English abstract).
[28] 敖俊华, 黄振瑞, 江永, 邓海华, 陈顺, 李奇伟 . 石灰施用对酸性土壤养分状况和甘蔗生长的影响. 中国农学通报, 2010,26(15):266-269.
Ao J H, Huang Z R, Jiang Y, Deng H H, Chen S, Li Q W . Effects of applying lime on the properties of acid soil and the growth of sugarcane. Chin Agric Sci Bull, 2010,26(15):266-269 (in Chinese with English abstract).
[29] 淡俊豪, 齐绍武, 黎娟, 靳辉勇, 朱益, 梁仲哲 . 生石灰对酸性土壤pH值及微生物群落功能多样性的影响. 西南农业学报, 2017,30:2739-2745.
Dan J H, Qi S W, Li J, Jin H Y, Zhu Y, Liang Z Z . Effect of quicklime on acid soil pH and metabolic functional diversity of microbial community. Southwest Chin J Agric Sci, 2017,30:2739-2745 (in Chinese with English abstract).
[30] 周文灵, 卢颖林, 敖俊华, 陈迪文, 黄莹, 沈大春, 黄惠娟, 江永 . 复合微生物菌肥对甘蔗生长的影响. 甘蔗糖业, 2016, ( 6):14-17.
Zhou W L, Lu Y L, Ao J H, Chen W D, Huang Y, Shen D C, Huang H J, Jiang Y . Effect of compound bacterial manure on the growth of sugarcane. Sugarcane Canesugar, 2016, ( 6):14-17 (in Chinese with English abstract).
[31] 谭周进, 周卫军, 张杨珠, 曾希柏, 肖嫩群, 刘强 . 不同施肥制度对稻田土壤微生物的影响研究. 植物营养与肥料学报, 2007,13:430-435.
Tan Z J, Zhou W J, Zhang Y Z, Zeng X B, Xiao N Q, Liu Q . Effect of fertilization systems on microbes in the paddy soil. Plant Nutr Fert Sci, 2007,13:430-435 (in Chinese with English abstract).
[32] 王伟华, 刘毅, 唐海明, 孙志龙, 李宝珍, 葛体达, 吴金水 . 长期施肥对稻田土壤微生物量、群落结构和活性的影响. 环境科学, 2018,39:430-437.
Wang W H, Liu Y, Tang H M, Sun Z L, Li B Z, Ge T D, Wu J S . Effects of long-term fertilization regimes on microbial biomass, community structure and activity in a paddy soil. Environ Sci, 2018,39:430-437 (in Chinese with English abstract).
[33] 鲍士旦 . 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 268-282.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agricultural Press, 2000. pp 268-282(in Chinese).
[34] Justyna P, Rebecchi A, Pisacane V . Bacterial diversity in typical Italian salami at different ripening stages as revealed by high-throughput sequencing of 16S rRNA amplicons. Food Microbiol, 2015,46:342-356.
[35] Lutz S, Anesio A M, Raiswell R . The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat Commun, 2016,7:11968.
[36] 汪洲涛, 苏炜华, 阙友雄, 许莉萍, 张华, 罗俊 . 应用AMMI和HA-GGE双标图分析甘蔗品种产量稳定性和试点代表性. 中国生态农业学报, 2016,24:790-800.
Wang Z T, Su W H, Que Y X, Xu L P, Zhang H, Luo J . Analysis of yield stability and test site representativeness of sugarcane trials using combined AMMI and HA-GGE biplotmodels. Chin J Eco-Agric, 2016,24:790-800 (in Chinese with English abstract).
[37] 罗俊, 阙友雄, 许莉萍, 陈如凯, 张华, 邓祖湖, 徐良年 . 中国甘蔗新品种试验. 北京: 中国农业出版社, 2014. pp 17-45.
Luo J, Que Y X, Xu L P, Chen R K, Zhang H, Deng Z H, Xu L N. Test of New Sugarcane Varieties in China. Beijing: China Agriculture Press, 2014. pp 17-45(in Chinese).
[38] Luo J, Pan Y B, Xu L P, Michael P G, Zhang H, Que Y X . Rational regional distribution of sugarcane cultivars in China. Sci Rep, 2015,5:15721.
[39] 包明, 何红霞, 马小龙, 王朝辉, 邱炜红 . 化学氮肥与绿肥对麦田土壤细菌多样性和功能的影响. 土壤学报, 2018,55:734-743.
Bao M, He H X, Ma X L, Wang Z H, Qiu W H . Effects of chemical nitrogen fertilizer and green manure on diversity and functions of soil bacteria in wheat field. Acta Pedol Sin, 2018,55:734-743 (in Chinese with English abstract).
[40] 王涛, 乔卫花, 李玉奇, 奥岩松 . 轮作和微生物菌肥对黄瓜连作土壤理化性状及生物活性的影响. 土壤通报, 2011,42:578-583.
Wang T, Qiao W H, Li Y Q, Ao Y S . Effects of rotation and microbial fertilizers on the properties of continuous cucumber cropping soil. Chin J Soil Sci, 2011,42:578-583 (in Chinese with English abstract).
[41] 李玉辉, 李源环, 邓小华, 周米良, 田明慧, 田峰, 张明发, 杨丽丽 . 石灰和绿肥对不同种植制度植烟酸性土壤改良效果. 水土保持学报, 2018,32(6):365-370.
Li Y H, Li Y H, Deng X H, Zhou M L, Tian M H, Tian F, Zhang M F, Yang L L . Effects of application of lime and green manure on acid soil improvement in different cropping systems. J Soil Water Conserv, 2018,32(6):365-370 (in Chinese with English abstract).
[42] Magurran A E. Ecological Diversity and Its Measurement. Princeton: Princeton University Press, 1988. pp 7-45.
[43] 王桂君 . 生物炭和有机肥对松嫩平原沙化土壤的改良效应及其机制研究. 东北师范大学博士学位论文, 吉林长春, 2018.
Wang G J . Improvement Effect and Mechanism of Biochar and Organic Fertilizer on Sandy Soil in Songnen Plain. PhD Dissertation Northeast Normal University, Changchun, Jilin, China, 2018 (in Chinese with English abstract).
[44] 张聘 . 机收对宿根甘蔗根际土壤微生物群落和酶活性的影响 . 广西大学硕士学位论文, 广西南宁, 2017.
Zhang P . Effects of Mechanical Harvesting on Soil Microbial Community and Enzyme Activities in Sugarcane Rhizosphere. MS Thesis of Guangxi University, Nanning, Guangxi, China, 2017 (in Chinese with English abstract).
[45] De Vries F T, Griffiths R I, Bailey M . Soil bacterial networks are less stable under drought than fungal networks. Nat Commun, 2018,9:3012-3033.
[46] Faoro H, Alves A C, Souza E M . Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl Environ Microbiol, 2010,76:4744-4749.
[47] Ventura M, Canchaya C, Tauch A . Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev, 2007,71:495-548.
[48] Bauld J, Brock T D . Ecological studies of chloroflexis, ecological studies of vhloroflexis, a gliding photosynthetic bacterium. Arch Mikrobiol, 1973,92:267-284.
[49] Guo J, Liu W, Chen Z . Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant Soil, 2017,424:335-349.
[50] Rousk J, Brookes P C, Bååth E . Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol Ecol, 2015,76:89-99.
[1] 邹京南, 于奇, 金喜军, 王明瑶, 秦彬, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J]. 作物学报, 2020, 46(5): 745-758.
[2] 周磊, 刘秋员, 田晋钰, 朱梦华, 程爽, 车阳, 王志杰, 邢志鹏, 胡雅杰, 刘国栋, 魏海燕, 张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异[J]. 作物学报, 2020, 46(5): 772-786.
[3] 丁永刚,李福建,王亚华,汤小庆,杜同庆,朱敏,李春燕,朱新开,丁锦峰,郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(4): 544-556.
[4] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
[5] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[6] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[7] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[8] 叶夕苗,程鑫,安聪聪,袁剑龙,余斌,文国宏,李高峰,程李香,王玉萍,张峰. 马铃薯产量组分的基因型与环境互作及稳定性[J]. 作物学报, 2020, 46(3): 354-364.
[9] 杨志远,李娜,马鹏,严田蓉,何艳,蒋明金,吕腾飞,李郁,郭翔,胡蓉,郭长春,孙永健,马均. 水肥“三匀”技术对水稻水、氮利用效率的影响[J]. 作物学报, 2020, 46(3): 408-422.
[10] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[11] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[12] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[13] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[14] 赵伟,甄天悦,张子山,徐铮,高大鹏,丁聪,刘鹏,李耕,宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量[J]. 作物学报, 2020, 46(02): 249-258.
[15] 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[6] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[7] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[8] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[9] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[10] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .