欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (7): 1120-1127.doi: 10.3724/SP.J.1006.2020.94173

• 研究简报 • 上一篇    下一篇

甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析

王丹丹1,**,柳洪鹃1,**,王红霞2,张鹏2,*(),史春余1,*()   

  1. 1 山东农业大学农学院, 山东泰安 271018
    2 中国科学院分子植物科学卓越创新中心 / 植物生理生态研究所植物分子遗传国家重点实验室, 上海 200032
  • 收稿日期:2019-11-11 接受日期:2020-03-24 出版日期:2020-07-12 发布日期:2020-04-03
  • 通讯作者: 张鹏,史春余 E-mail:zhangpeng@cemps.ac.cn;scyu@sdau.edu.cn
  • 作者简介:王丹丹, E-mail: wdd201712@126.com|柳洪鹃, E-mail: liumei0535@126.com
    ** 同等贡献
  • 基金资助:
    国家自然科学基金青年基金项目(31701357);山东省薯类产业创新团队首席专家项目(SDAIT-16-01)

Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3

WANG Dan-Dan1,**,LIU Hong-Juan1,**,WANG Hong-Xia2,ZHANG Peng2,*(),SHI Chun-Yu1,*()   

  1. 1 College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2019-11-11 Accepted:2020-03-24 Online:2020-07-12 Published:2020-04-03
  • Contact: Peng ZHANG,Chun-Yu SHI E-mail:zhangpeng@cemps.ac.cn;scyu@sdau.edu.cn
  • About author:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China Youth Fund(31701357);Shandong Agriculture Innovation Team(SDAIT-16-01)

摘要:

蔗糖作为光合产物的主要运输形式, 其跨膜运输主要由蔗糖转运蛋白介导。本研究采用RACE技术, 从甘薯[Ipomoea batatas (L.) Lam.]中克隆得到甘薯蔗糖转运蛋白基因IbSUT3 (GenBank登录号为MN233361)。IbSUT3基因全长1607 bp, 开放阅读框为1518 bp, 编码505个氨基酸。IbSUT3蛋白预测分子量为53.82 kD, 等电点(pI)为9.19, 含有12个跨膜结构域。序列比对表明, IbSUT3属于Group I亚族, 与其他物种的SUTs蛋白高度相似, 但与Group IV亚族的蔗糖转运蛋白在进化上具有明显差别。利用酵母表达体系SUSY7/ura3证明IbSUT3编码有功能的蔗糖转运蛋白。亚细胞定位发现, IbSUT3蛋白定位在烟草原生质体膜上。实时荧光定量PCR结果表明, IbSUT3基因在甘薯不同组织中均有表达, 但在叶片中表达最高; 非生物胁迫(低温、高盐、干旱)和外源脱落酸均可诱导IbSUT3基因在叶片中的表达, 表明该基因响应多种非生物胁迫, 参与植物对脱落酸的响应。

关键词: 蔗糖转运蛋白, IbSUT3基因, 亚细胞定位, 功能分析, 逆境胁迫

Abstract:

Sucrose, as the main transporter of photosynthate, is transported by sucrose transporters. In this study, we cloned IbSUT3 gene from sweet potato (Ipomoea batatas Lam. GenBank accession number MN233361), by RACE technique. The full-length sequence of the gene is 1607 bp and the complete open reading frame is 1518 bp, encoding 505 amino acids. The predicted protein has the molecular weight of 53.82 kD and isoelectric point of 9.19, containing 12 transmembrane domains. Multiple sequence alignment analysis indicated the protein, belonging to Group I, was significantly different from Group IV in evolution and shared high similarities with SUTs from other plant species. IbSUT3 had the function of transporting sucrose verified by SUSY7/ura3 system. Subcellular localization showed that IbSUT3 protein was located in the tobacco protoplasts plasma membrane. The qRT-PCR results showed that IbSUT3 highly expressed in leaves and induced by drought, high salt, low temperature and exogenous abscisic acid, suggesting that IbSUT3 is involved in response to various abiotic stresses, including abscisic acid.

Key words: sucrose transporters, IbSUT3 gene, subcellular localization, function analysis, adversity stresses

表1

引物信息"

引物Primer 序列 Sequence (5'-3') 目的 Purpose
E3-F AGATAGTAATGGTGGCCTCCATTGC EST序列扩增
E3-R GCGAAGCCAATGAGGAAGACAGC EST sequence amplification
Sp-F1 AGATAGTAATGGTGGCGTCCATTGC 3'端和5'端RACE扩增
Sp-F2 GCGTCCTTTATGTGGCTTTGTGG 3' and 5'-RACE amplification
Sp-R1 TGAGATTGGCGCAGTAAACG
Sp-R2 GCGGCGAAGCCAATGAGGAA
IbSUT3-F CCATTCAGGCTGCGCAACT IbSUT3全长扩增
IbSUT3-R TTAAGAAATTAATTCCAAGGTCCAT IbSUT3 full-length amplification
SUT3Q-F CGGAAAATCCTCCTTGCAAGTG 荧光定量PCR
SUT3Q-R GACGCCACCATTACTATCTTCC Real-time PCR
Actin-F CTGGTGTTATGGTTGGGATGG
Actin-R GGGGTGCCTCGGTAAGAAG
SUT3m-F CATCGATATGGAGAGAGACTCCGTTAACG 酵母功能验证
SUT3m-R CCCCGGGTCAGTGGAAACCACCACCAGAT Yeast function verification
SUT3g-F ACGCGTCGACATGGAGAGAGACTCCGTTAACGGAA 亚细胞定位
SUT3g-R GGACTAGTACGTGGAAACCACCACCAGATAGCTCA Subcellular localization

图1

IbSUT3基因扩增结果 A: IbSUT3基因EST序列扩增结果; B: IbSUT3 3'-RACE, 5'-RACE扩增结果; C: IbSUT3全长扩增结果。"

图2

IbSUT3蛋白跨膜区预测"

图3

IbSUT3编码的氨基酸序列与其他物种SUTs的多重比对"

图4

IbSUT3与其他植物SUTs蛋白的系统发生分析"

图5

IbSUT3功能分析 A: 转化的酵母菌株在含2%蔗糖培养基上的生长情况; B: 转化的酵母菌株在含2%葡萄糖培养基上生长情况。"

图6

IbSUT3亚细胞定位分析"

图7

IbSUT3基因在不同组织中的表达 L: 叶片; B: 柄; J: 茎; WR: 白须根; DR: 发育根; MR: 成熟根。图柱上不同小写字母表示在0.05水平上显著差异。"

图8

IbSUT3在胁迫处理下的表达模式 图柱上不同小写字母表示在0.05水平上显著差异。"

[1] Lalonde S, Wipf D, Frommer W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 2004,55:341-372.
doi: 10.1146/annurev.arplant.55.031903.141758 pmid: 15377224
[2] Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta, 2018,247:587-611.
pmid: 29138971
[3] Peng C C, Zhao X L. Function and regulation of plant sucrose transporter. Plant Physiol Commun, 2010,46:317-324.
[4] Liesche J, Krügel U, He H, Chincinska I, Hackel A, Kühn C. Sucrose transporter regulation at the transcriptional, post-transcriptional and post-translational level. J Plant Physiol, 2011,168:1426-1433.
doi: 10.1016/j.jplph.2011.02.005 pmid: 21444123
[5] Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci, 2013,38:151-159.
doi: 10.1016/j.tibs.2013.01.003 pmid: 23403214
[6] 高蕾, 肖文芳, 李文燕, 彭昌操. 拟南芥蔗糖转运蛋白(SUTs)的功能研究进展. 分子植物育种, 2011,9:251-255.
Gao L, Xiao W F, Li W Y, Peng C C. Research progress on the function of Arabidopsis sucrose transporter (SUTs). Mol Plant Breed, 2011,9:251-255 (in Chinese with English abstract).
[7] 孙学武, 谭炎宁, 孙志忠, 袁定阳, 段美娟. 水稻蔗糖转运蛋白研究进展. 生命科学研究, 2014,18:157-161.
Sun X W, Tan Y N, Sun Z Z, Yuan D Y, Duan M J. Research progress on rice sucrose transporter. Life Sci Res, 2014,18:157-161 (in Chinese with English abstract).
[8] Chincinska I A. Liesche J, Krügel U, Michalska J, Geigenberger P, Grimm B, Kühn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol, 2008,146:515-528.
pmid: 18083796
[9] 贺红霞, 陈亮, 康爽. 玉米ZmSUT4-J基因的克隆与植物表达载体构建. 东北农业科学, 2015,40(3):18-22.
He H X, Chen L, Kang S. Cloning of maize ZmSUT4-J gene and construction of plant expression vector. Northeast Agric Sci, 2015,40(3):18-22 (in Chinese with English abstract).
[10] Payyavula R S, Tay K H, Tsai C J. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J, 2015,65:757-770.
pmid: 21261761
[11] Chincinska I, Gier K, Krügel U, Liesche J, He H, Grimm B, Harren F J, Cristescu S M, Kühn C. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Front Plant Sci, 2013,4:26.
pmid: 23429841
[12] Bürkle L, Hibberd J M, Quick W P, Kuhn C, Hirner B, Frommer W B. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol, 1998,118:59-68.
doi: 10.1104/pp.118.1.59 pmid: 9733526
[13] Gong X, Liu M, Ruan Y, Ding R, Ji Y, Zhang N, Zhang S, Farmer J, Wang C. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiol Plant, 2014,153:119-136.
pmid: 24814155
[14] Yan L, Gu Y, Hua Q, Zhang Y Z. Two pairs of sucrose transporters in Ipomoea batatas (L.) Lam are predominantly expressed in sink leaves and source leaves respectively. Plant Sci, 2010,179:250-256.
[15] 李岩, 王海燕, 张义正. 甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位. 应用与环境生物学报, 2010,16:798-802.
Li Y, Wang H Y, Zhang Y Z. Localization of sweet potato sucrose transporter IbSUT1x in yeast cells. Chin J Appl Environ Biol, 2010,16:798-802 (in Chinese with English abstract).
[16] Riesmeier J W, Willmitzer L, Frommer W B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J, 1992,11:4705-4713.
pmid: 1464305
[17] Drechsel G, Bergler J, Wippel K, Sauer N, Vogelmann K, Hoth S. C-terminal armadillo repeats are essential and sufficient for association of the plant U-box armadillo E3 ubiquitin ligase SAUL1 with the plasma membrane. Exp Bot, 2011,62:775-785.
doi: 10.1093/jxb/erq313
[18] Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J, 1994,5:421-427.
doi: 10.1111/j.1365-313x.1994.00421.x pmid: 8180625
[19] 伍宝朵, 周蓉, 陈海峰. 蔗糖载体调控作物“源、库”分配的研究进展. 中国农学通报, 2012,28(6):26-30.
Wu B D, Zhou R, Chen H F. The progress about sucrose transporters mediate crop sucrose from source to sink. Chin Agric Sci Bull, 2012,28(6):26-30 (in Chinese with English abstract).
[20] Weise A, Barker L, Kühn C, Buschmann H, Frommer W B, Ward J M. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell, 2000,12:1345-1355.
pmid: 10948254
[21] Deol K. Molecular Cloning and Functional Characterization of a New Sucrose Transporter in Hexaploid Wheat (Triticum aestivum L.). PhD Dissertation of the University of Manitoba, Manitoba, Canada, 2012.
[22] Riesmeier J W, Willmitzer L, Frommer W B. Antisense repression of the sucrose transporter affects assimilate partitioning in transgenic potato plants. EMBO J, 1994,13:1-7.
pmid: 8306952
[23] Kühn C, Fernie A R, Roessner-Tunali U. The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol, 2003,131:102-113.
pmid: 12529519
[24] Gottwald J R, Krysan P J, Young J C, Evert R F, Sussman M R. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci USA, 2001,97:13979-13984.
doi: 10.1073/pnas.250473797 pmid: 11087840
[25] Burkle L. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol, 1998,118:59-68.
doi: 10.1104/pp.118.1.59 pmid: 9733526
[26] Xu Q, Chen S, Yun J R. Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol, 2018,17:930-945.
[27] Noiraud N. The sucrose transporter ofCelery identification and expression during salt stress. Plant Physiol, 2000,122:1447-1456.
doi: 10.1104/pp.122.4.1447 pmid: 10759540
[1] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[2] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[3] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
[4] 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30.
[5] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[6] 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828.
[7] 段方猛, 罗秋兰, 鲁雪莉, 齐娜伟, 刘宪舜, 宋雯雯. 玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应[J]. 作物学报, 2018, 44(03): 343-356.
[8] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
[9] 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018, 44(01): 53-62.
[10] 吕有军,杨卫军,赵兰杰,姚金波,陈伟,李燕,张永山. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479.
[11] 赵立娜.段硕楠.张华宁.郭秀林.李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(07): 1021-1029.
[12] 余建,刘长英,赵爱春,王传宏,蔡雨翔,余茂德*. 桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析[J]. 作物学报, 2017, 43(06): 839-848.
[13] 董萌,高友菲,韩天富,东方阳,蒋炳军. 大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作[J]. 作物学报, 2016, 42(10): 1419-1428.
[14] 王婷婷,丛亚辉,柳聚阁,王宁帅,琴李艳,盖钧镒. 大豆中一个WRKY28-like基因的克隆与功能分析[J]. 作物学报, 2016, 42(04): 469-481.
[15] 丛亚辉,王婷婷,柳聚阁,王宁,高萌萌,李艳,盖钧镒. 大豆耐铝毒候选基因GmSTOP1的克隆与表达分析[J]. 作物学报, 2015, 41(12): 1802-1809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[4] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[5] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[6] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[7] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[8] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[9] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[10] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .