欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2229-2236.doi: 10.3724/SP.J.1006.2012.02229

• 耕作栽培·生理生化 • 上一篇    下一篇

基于HA-GGE双标图的长江流域棉花区域试验环境评价

许乃银1,2,张国伟2,李健2,周治国1,*   

  1. 1 南京农业大学 / 农业部作物生长调控重点开放实验室,江苏南京210095;2 江苏省农业科学院经济作物研究所 / 农业部长江下游棉花和油菜重点实验室,江苏南京 210014
  • 收稿日期:2012-04-19 修回日期:2012-08-15 出版日期:2012-12-12 网络出版日期:2012-10-08
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2012ZX08013015-003, 2012ZX08013016-003)和农业部农作物区域试验项目(012022911108)资助。

Evaluation of Cotton Regional Trial Environments Based on HA-GGE Biplot in the Yangtze River Valley

XU Nai-Yin1,2,ZHANG Guo-Wei2,LI Jian2,ZHOU Zhi-Guo1,*   

  1. 1 Nanjing Agricultural University / Ministry of Agriculture Key Laboratory of Crop Growth Regulation, Nanjing 210095, China; 2 Jiangsu Academy of Agricultural Sciences / Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Nanjing 210014, China
  • Received:2012-04-19 Revised:2012-08-15 Published:2012-12-12 Published online:2012-10-08

摘要:

采用遗传力校正的GGE (HA-GGE)双标图方法对2000—2010年间27个独立的长江流域棉花品种区域试验的15个试验环境(试验点)在皮棉产量选择上的鉴别力、代表性、理想指数和离优度指数进行分析和综合评价。结果表明,湖北黄冈、江苏南京和湖北荆州是最理想的试验环境,对以长江流域为目标环境的广适性新品种选育和作为区域试验点鉴别理想品种的效率最高,而四川射洪、四川简阳、湖北襄阳和河南南阳不适宜作为针对长江流域的新品种选择与推荐环境。理想试验环境都位于长江流域除南襄盆地以外的中下游棉区,而不理想试验环境中的四川射洪和四川简阳位于长江流域棉区最西边的品种熟期较早且种植密度较高的四川盆地棉区,河南南阳和湖北襄阳位于长江流域棉区最北边, 与黄河流域棉区接壤, 霜期较早且晚秋降温快的南襄盆地棉区。本研究充分展示了HA-GGE双标图在区域试验环境评价方面的应用效果,也为长江流域棉花品种生态区划分和国家棉花区试方案的决策提供了理论依据。

关键词: 棉花(Gossypium hirsutum L.), HA-GGE双标图, 鉴别力, 代表性, 区域试验环境

Abstract:

The latest heritability adjusted GGE (HA-GGE) biplot analysis was adopted toevaluate cotton regional trial environments (trial locations) in terms of the discriminating ability, representative ability, desirability index and superiority index for cotton lint yield selection in27 independent sets of cotton variety trials in the Yangtze River Valley during 20002010 periods. The results showed that Huanggang, Nanjing and Jinzou werethe most ideal trial environments and thereforewere the most effective locations for developing and/or remanding cultivars for broad adaptation selection in the target region. However, Shehong, Jianyang, Xiangyang and Nanyang were not desirable for cotton lint yield selection in the whole regions. The desirable test environments were alllocated in the middle and lower reaches of the Yangtze River Valley, while among the undesirable test environments Nanyang and Xiangyang were located at the inland Nan-Xiang basin bordering with the Yellow River Valley in the north, where the first frost came early and temperature declined sharply in the late autumn, and Shehong and Jianyang were located at the mountainous Sichuan basin in the west area, where cotton planting density was higher and cotton matured earlier. Therefore, this article fully displayed the HA-GGE biplot application efficiency in regional trial environment evaluation and also provided the theory background for the decision-making in national cotton scheme implementation and cotton megaenvironment investigation in the Yangtze River Valley.

Key words: Cotton (Gossypium hirsutum L.), Heritability adjusted GGE biplot, Discriminating ability, Representative ability, Regional trial environment

[1]Jacksen R C, Van Ooijen J W, Stam P, Listen C, Dean D. Genotype by environment interaction in genetic mapping of multiple quantitatice trait loci. Theor Appl Genet, 1995, 91: 33–37



[2]Patterson A H, Damon S, Hewitt J D, Zamir H D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics, 1991, 127: 181–197



[3]Rodriguez M, Rau D, Papa R. Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica, 2008, 163: 231–247



[4]Culman S W, Gauch H G, Blackwood C B, Thies J E. Analysis of T-RFLP data using analysis of variance and ordination methods A comparative study. J Microbiol Methods, 2008, 75: 55–63



[5]Egesi C N, Ilona P, Ogbe F O, Akoroda M, Dixon A. Genetic variation and genotype × environment interaction for yield and other agronomic traits in cassava in Nigeria. Agron J, 2007, 99: 1137–1142



[6]Yan W, Kang M S, Ma B, Woods S, Cornelius P L. GGE Biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 643–653



[7]Baxevanos D, Goulas C, Tzortzios S, Mavromatis A. Interrelationship among and repeatability of seven stability indices estimated from commercial cotton (Gossypium hirsutum L.) variety evaluation trials in three Mediterranean countries. Euphytica, 2008, 161: 371–382



[8]Gauch H G. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488–1500



[9]Chang L(常磊), Chai S-X(柴守玺). Application of AMMI model in the stability analysis of spring wheat in rainfed areas. Acta Ecol Sin (生态学报), 2006, 26(11): 3677–3684 (in Chinese with English abstract)



[10]Yan W. GGE Biplot vs. AMMI graphs for genotpe-by-environment data analysis. J Ind Sco Agric Statist, 2011, 65: 1–10



[11]Yan W-K(严威凯). Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin (作物学报), 2010, 36(11): 1805–1819 (in Chinese with English abstract)



[12]Yan W, Hunt L A, Sheng Q, Szlavnics Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci, 2000, 40: 597–605



[13]Yan W. GGEbiplot–a Windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron J, 2001, 93: 1111–1118



[14]Yan W, Kang M S. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. Boca Raton, FL: CRC Press, 2003



[15]Yan W, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 2010, 171: 355–369



[16]Baxevanos D, Goulas C, Rossi J, Braojos E. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE biplots. Agron J, 2008, 100: 1230–1236



[17]Cravero V, Espósito M A, Anido F L, García S M, Cointry E. Identification of an ideal test environment for asparagus evaluation by GGE-biplot analysis. Austr J Crop Sci, 2010, 4: 273–277



[18]Chang L(常磊), Chai S-X(柴守玺). Application of GGE biplot in spring wheat yield stability analysis in rainfed areas of China. Chin J Eco-Agric (中国生态农业学报), 2010, 18(5): 988–994 (in Chinese with English abstract)



[19]Yan W-K(严威凯), Sheng Q-L(盛庆来), Hu Y-G(胡跃高), Hunt L A. GGE biplot: an ideal tool for studying genotype by environment interaction of regional yield trial data. Acta Agron Sin (作物学报), 2001, 27(1): 21–28 (in Chinese with English abstract).



[20]Zhang Z-F(张志芬), Fu X-F(付晓峰), Liu J-Q(刘俊青), Yang H-S(杨海顺). Yield stability and testing-site representativeness in national regional trials for oat lines based on GGE-biplot analysis. Acta Agron Sin (作物学报), 2010, 36(8): 1377–1385 (in Chinese with English abstract.



[21]Bhan M K, Pal S, Rao B L, Dhar A K, Kang M S. GGE biplot analysis of oil yield in lemongrass. J New Seeds, 2005, 7: 127–139



[22]Glaz B, Kang M S. Location contributions determined via GGE biplot analysis of multienvironment sugarcane genotype-performance trials. Crop Sci, 2008, 48: 941–950



[23]Samonte S O P, Wilson L T, McClung A M, Medley J C. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Sci, 2005, 45: 2414–2424



[24]Zhang Y(张勇), He Z-H(何中虎), Zhang A-M(张爱民). GGE-biplot for studying paste property of Chinese Spring wheat. Acta Agron Sin (作物学报), 2003, 29(2): 245–251 ( in Chinese with English abstract)



[25]Blanche S B, Myers G O. Identifying Discriminating Locations for Cultivar Selection in Louisiana. Crop Sci, 2006, 46: 946–949



[26]Sas-Institute. SAS User’s Guide: Statistics. v.9.0. Cary, NC: SAS Inst., 2002



[27]Cody R P, Smith J K. Applied Statistics and the SAS Programming Language. 4th edn. New Jersey, USA: Prentice Hall, 1997



[28]Annicchiarico P. Genotype by environment interaction: Challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper 174. Rome: Food and Agriculture Organization of the United Nations, 2002



[29]Guillen-Portal F R, Russell W K, Eskridge K M, Baltensperger D D, Nelson L A, D’Croz-Mason N E, Johnson B E. Selection environments for maize in the US Western High Plains. Crop Sci, 2004,44: 1519–1526

[1] 闫彩霞,王娟,张浩,李春娟,宋秀霞,孙全喜,苑翠玲,赵小波,单世华. 基于表型性状构建中国花生地方品种骨干种质[J]. 作物学报, 2020, 46(4): 520-531.
[2] 胡海燕,刘迪秋,李允静,李阳,涂礼莉*. 一个棉花纤维伸长期优势表达启动子pGhFLA1的克隆与鉴定[J]. 作物学报, 2017, 43(06): 849-854.
[3] 罗俊,许莉萍,邱军,张华,袁照年,邓祖湖,陈如凯,阙友雄. 基于HA-GGE双标图的甘蔗试验环境评价及品种生态区划分[J]. 作物学报, 2015, 41(02): 214-227.
[4] 许乃银,李健. 棉花区试中品种多性状选择的理想试验环境鉴别[J]. 作物学报, 2014, 40(11): 1936-1945.
[5] 许乃银,李健. 利用GGE双标图划分长江流域棉花纤维品质生态区[J]. 作物学报, 2014, 40(05): 891-898.
[6] 杨长琴,刘瑞显,张国伟,徐立华,周治国. 花铃期渍水对棉铃对位叶蔗糖代谢及铃重的影响[J]. 作物学报, 2014, 40(05): 908-914.
[7] 刘敬然,刘佳杰,孟亚利,王友华,陈兵林,张国伟,周治国. 外源6-BA和ABA对不同播种期棉花产量和品质及其棉铃对位叶光合产物的影响[J]. 作物学报, 2013, 39(06): 1078-1088.
[8] 马溶慧;许乃银;张传喜;李文峰;冯营;屈磊;王友华;周治国. 氮素调控棉花纤维蔗糖代谢及纤维比强度的生理机制[J]. 作物学报, 2008, 34(12): 2143-2151.
[9] 李本贵;阎俊;何中虎;李仲来. 用AMMI模型分析作物区域试验中的地点鉴别力[J]. 作物学报, 2004, 30(06): 593-596.
[10] 王永军;吴晓雷;喻德跃;章元明;陈受宜;盖钧镒. 重组自交系群体的检测调整方法及其在大豆NJRIKY群体的应用[J]. 作物学报, 2004, 30(05): 413-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!