欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2237-2245.doi: 10.3724/SP.J.1006.2012.02237

• 耕作栽培·生理生化 • 上一篇    下一篇

棉花地上部生长的功能-结构模型研究

陈超1,2,潘学标1,*,张立祯1,庞艳梅1,3   

  1. 1 中国农业大学资源与环境学院, 北京 100193; 2 四川省气候中心, 四川成都 610072; 3 北京市门头沟区气象局, 北京 102300
  • 收稿日期:2012-02-13 修回日期:2012-09-05 出版日期:2012-12-12 网络出版日期:2012-10-08
  • 通讯作者: 潘学标, E-mail: panxb@cau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30971686), 国家公益性行业(气象)科研专项经费项目(GYHY201206022)和国家高技术研究发展计划(863计划)项目(2007AA10Z228)资助。

Functional and Structural Model for Above-Ground Growth in Cotton

CHEN Chao1,2,PAN Xue-Biao1,*,ZHANG Li-Zhen1,PANG Yan-Mei1,3   

  1. 1 College of Resources and Environment, China Agricultural University, Beijing 100193, China; 2 Sichuan Climate Center, Chengdu 610072, China; 3 Beijing Mentougou Meteorological Administration, Beijing 102308, China
  • Received:2012-02-13 Revised:2012-09-05 Published:2012-12-12 Published online:2012-10-08
  • Contact: 潘学标, E-mail: panxb@cau.edu.cn

摘要:

利用20082010年棉花密度试验, 分析棉株器官生物量-形态间异速生长关系, 改进COTGROW模型中的发育和形态发生模块, 构建了棉花地上部器官形态建成模型; 基于COTGROW模型模拟数据,GroIMP可视化开发平台的数据链接, 实现了棉花生长过程的可视化; 利用建立的功能-结构模型对不同密度棉花冠层的光截获量进行了模拟。利用2010年的试验数据检验模型, 结果表明, 棉花株高、主茎节数、果枝数、各果枝果节数、节间长度、节间直径、叶片长度、叶片宽度、叶柄长度、叶柄直径、棉铃长度以及铃直径测定值与模拟值间的均方根误差分别为3.850.640.520.661.000.151.582.392.540.050.130.10 cm, 模型效果较好; 构建的棉花地上部功能-结构模型可以较好地模拟棉花的形态特征, 并较逼真地显示棉花器官、植株的三维动态生长过程, 可以反映出不同环境条件、不同密度处理下棉花植株的三维形态, 在可视化的基础上模拟棉花冠层空间的光截获量。为虚拟棉作研究提供了技术基础。

关键词: 棉花, COTGROW模型, GroIMP, 功能-结构模型

Abstract:

Three-year experiments with different planting densities were conducted in Anyang, Henan Provence of China. The development and morphogenesis module of COTGROW model was improved based on the allometry relationship between biomass and morphology, which was used to construct cotton model for above-ground organs. The morphology model included several sub-models, such as stem, leaf, petiole, boll, and so on. A visual cotton growth process was displayed through linking the COTGROW and the GroIMP models, thus, the cotton canopy light interception was simulated. The results showed that the dynamic change of each organ size could be characterized by relationship between biomass and morphology based on cotton above-ground organs model of COTGROW. The model was validated by independent experiments in 2010. The root mean squared error (RMSE) between the measured and simulated values for morphological parameters were 3.85, 0.64, 0.52, 0.66, 1.00, 0.15, 1.58, 2.39, 2.54, 0.05, 0.13, and 0.10 cm for plant height, nodes on main stem, the number of fruiting branches, nodes on different fruiting branches, internode length, internode diameter, leaf length, leaf width, petiole length, petiole diameter, boll length and boll diameter, respectively. Various 3D morphology of cotton plant in different environmental conditions and different plant densities was shown, and light interception of canopy also well simulated. Functional and structural model for above-ground organs in cotton could be used to simulate cotton morphological characteristics and display the real growth process of organs and plant, which provides a technical basis for virtual farming.

Key words: Cotton, COTGROW model, GroIMP, Functional and structural model

[1]Lacointe A. Carbon allocation among tree organs: a review of basic processes and representation in functional-structural tree models. Ann For Sci, 2000, 57: 521–533



[2]Zheng X-Q(郑秀琴), Feng L-P(冯利平), Liu R-H(刘荣花). A simulation model for yield components and final yield in winter wheat. Acta Agron Sin (作物学报), 2006, 32(2): 260–266 (in Chinese with English abstract)



[3]Eckersten H, Torssell B, Kornher A, Boström U. Modeling biomass, water and nitrogen in grass ley: estimation of N uptake parameters. Eur J Agron, 2007, 27: 89–101



[4]Prusinkiewicz P. Modeling of spatial structure and development of plants: a review. Sci Hort, 1998, 74: 113–149



[5]Han J. Plant simulation based on fusion of L-system and IFS. Lect Notes Comp Sci, 2007, 4488: 1091–1098



[6]Zhou S-Q(周淑秋), Guo X-Y(郭新宇), Lei L(雷蕾). Design and realization of cucumber growing visualization system. Comp Technol Dev (计算机技术与发展), 2007, 14(1): 227–229 (in Chinese with English abstract)



[7]Hanan J. Virtual plants-integrating architectural and physiological models. Environ Mod Software, 1997, 12: 35–42



[8]Yan H P, Kang M Z, de Reffye P, Dingkuhn M. A dynamic, architectural plant model simulating resource-dependent growth. Ann Bot, 2004, 93: 591–602



[9]Room P M, Hanan J S, Prusinkiewicz P. Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends Plant Sci, 1996, 1: 33–38



[10]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton. Agric Systems, 2003, 75: 47–77



[11]Hearn A B. OZCOT: a simulation model for cotton crop management. Agricl Systems, 1994, 44: 257–299



[12]Jallas E, Martin P, Sequeira R, Turner S. Virtual COTON, the Firstborn of the Next Generation of Simulation Model. In: Heudin J C ed. Virtual Worlds: Second International Conference. Berlin: Springer-Verlag Berlin Heidelberg, 2000. pp 235–244



[13]Jallas E, Sequeira R, Martin P, Turner S, Papajorgji P. Mechanistic virtual modeling: coupling a plant simulation model with a three-dimensional plant architecture component. Environ Model Assess, 2009, 14: 29–45



[14]Baker D N, Lambert J R, Mckicion J M. GOSSYM: A simulator of cotton growth and yield. South Cordlina Agric Exp Station Tech Bull, 1983, p 1089



[15]Yang J(杨娟), Zhao M(赵明), Pan X-B(潘学标). Visualization of cotton growth based on NURBS and VC++ 6.0. Trans CSAE (农业工程学报), 2006, 22(10): 159–162 (in Chinese with English abstract)



[16]Zhou J(周娟), Zhou Z-G(周治国), Chen B-L(陈兵林), Meng Y-L(孟亚利). Morphogenesis model-based virtual growth system of cotton (Gossypium hirsutum L.). Sci Agric Sin (中国农业科学), 2009, 42(11): 3843–3851 (in Chinese with English abstract)



[17]Pan X-B(潘学标), Han X-L(韩湘玲), Shi Y-C(石元春). COTGROW: cotton growth and development simulation model. Cotton Sci (棉花学报), 1996, 8(4): 80–188 (in Chinese with English abstract) 



[18]Pan X-B(潘学标), Han X-L(韩湘玲), Dong Z-S(董占山), Cui X-W(崔秀稳), Wang Y-Q(王延琴), Deng S-H(邓绍华). Developed on cotton growth and development model COTGROW I photosynthesis and dry matter production and distribution. Cotton Sci (棉花学报), 1997, 9(3): 132–141 (in Chinese with English abstract)



[19]Pan X-B(潘学标), Han X-L(韩湘玲), Wang Y-Q(王延琴), Cui X-W(崔秀稳), Deng S-H(邓绍华). On cotton growth and development model COTGROW II morphological development. Cotton Sci (棉花学报), 1999, 11(4): 174–181 (in Chinese with English abstract)



[20]Vos J, Marcelis L F M, de Visser P H B, Struik P C, Evers J B. Functional-structural plant modelling in crop production. In: Proceedings of the Frontis Workshop on Functional-Structural Plant Modelling in Crop Production, Wageningen, The Netherlands, 5–8 March, 2006



[21]Hemmerling R, Kniemeyer O, Lanwert D, Kurth W, Buck-Sorlin G. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Funct Plant Biol, 2008, 35: 739–750



[22]Preetham A J, Shirley P, Smits B. A practical analytic model for daylight. In: Proceedings of SIGGRAPH. New York: ACM Press/Addison-Wesley Publishing Co, 1999, p 91



[23]Gautier H, Mech P R, Prusinkiewicz C, Varlet-Grancher C. 3D architectural modelling of aerial photomophogenesis in white clover (Trifolium repens L.) using L-systems. Ann Bot, 2000, 85: 359–370



[24]Veach E. Robust Monte Carlo Methods for Light Transport Simulation. PhD Dissertation of Stanford University, 1997. pp 249–368



[25]Chelle M, Andrieu B. The nested radiosity model for the distribution of light within plant canopies. Ecol Mod, 1998, 111: 75–91



[26]Chelle M, Andrieu B. Radiative models for archirectural modeling. Agronomie, 1999, 19: 225–240



[27]Chelle M, Hanan J, Autret H. Lighting virtual crops: the CARIBU solution for open L-systems. In: Proceedings of the 4th International Workshop on Function

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!