作物学报 ›› 2018, Vol. 44 ›› Issue (12): 1818-1828.doi: 10.3724/SP.J.1006.2018.01818
张玉杰1,2,张园园1,3,张华宁1,秦宁1,2,李国良1,*(),郭秀林1,*()
Yu-Jie ZHANG1,2,Yuan-Yuan ZHANG1,3,Hua-Ning ZHANG1,Ning QIN1,2,Guo-Liang LI1,*(),Xiu-Lin GUO1,*()
摘要:
植物热激转录因子(heat shock transcription factor, Hsf)能够通过激活热激蛋白基因的表达而启动热激反应, 在传递热信号以及提高植物耐热性方面发挥重要的调控作用。植物Hsf属多基因家族, 数量因作物不同差异较大。小麦Hsf家族成员多, 特性和功能复杂多样。本文在通过生物信息学推测分析小麦Hsf家族基因数目及其分类的基础上, 从小麦幼叶中同源克隆获得A2亚族成员TaHsfA2e (GenBank登录号为MG700614)的完整编码序列, 序列长1026 bp, 编码341个氨基酸残基, 含完整的DNA结合结构域DBD、核定位信号序列NLS、核输出信号序列NES和激活域AHA。正常条件下TaHsfA2e蛋白质被定位在细胞核。同源分析表明, TaHsfA2e与小麦HsfA6f蛋白相似性最高, 达96%。定量分析表明, TaHsfA2e在小麦多个组织器官中表达量均低, 但在成熟种子中高表达。叶片中TaHsfA2e的表达受37℃热胁迫显著上调, 处理60 min时达峰值, 被SA和H2O2下调。50℃热胁迫下转TaHsfA2e酵母细胞的耐热性显著强于转空载体对照, TaHsfA2e可不同程度提高转基因拟南芥植株的基础耐热性和获得耐热性, 上调热胁迫条件下热相关蛋白基因的表达。
[1] |
Mittler R, Finka A, Goloubinoff P . How do plants feel the heat? Trends Biochem Sci, 2012,37:118-125
doi: 10.1016/j.tibs.2011.11.007 pmid: 22236506 |
[2] |
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K D . Complexity of the heat stress response in plants. Curr Opin Plant Biol, 2007,10, 310-316
doi: 10.1016/j.pbi.2007.04.011 pmid: 17482504 |
[3] |
Nover L, Scharf K D, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley W B . The HSF world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones, 1996,1:215-223
doi: 10.1379/1466-1268(1996)0012.3.CO;2 pmid: 9222607 |
[4] |
Guo M, Liu H J. Ma X, Luo D X, Gong Z H, Lu M H . The plant heat stress transcription factors (HSFs): structure, regulation and function in response to aboitic stresses. Front Plant Sci, 2016,7:114
doi: 10.3389/fpls.2016.00114 pmid: 26904076 |
[5] |
Xue G P, Sadat S, Drenth J, Mclntyre C L . The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot, 2014,65:539-557
doi: 10.1093/jxb/ert399 pmid: 24323502 |
[6] |
Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K . Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006,48:535-547
doi: 10.1111/j.1365-313X.2006.02889.x pmid: 17059409 |
[7] |
Heerklotz D, Döring P, Bonzelius F . The balance of nuclear import and export determines the intrancellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol, 2001,21:1759-1768
doi: 10.1128/MCB.21.5.1759-1768.2001 |
[8] |
Liu H C, Liao H T, Charng Y Y . The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ, 2011,34:738-751
doi: 10.1111/j.1365-3040.2011.02278.x pmid: 21241330 |
[9] |
Wunderlich M, Groß-Hardt R, Schöff F . Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol Biol, 2014,85:541-550
doi: 10.1007/s11103-014-0202-0 pmid: 24874772 |
[10] | Ikeda M, Mitsuda N, Ohme-Takagi M . Arabidopsis HsfB1 and HsfB2b act as repressors for the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol, 2011,157:1243-1254 |
[11] |
Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Schöffl F . Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant, 2009,2:152-165
doi: 10.1093/mp/ssn095 pmid: 19529832 |
[12] |
Zhu X, Thalor S K, Takahashi Y, Berberich T, Kusano T . An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant Cell Environ, 2012,35:2014-2030
doi: 10.1111/j.1365-3040.2012.02533.x pmid: 22571635 |
[13] |
Guo M, Liu H J, Ma X . The plant heat stress transcription factors (HSFs): structure, regulation and function in response to aboitic stresses. Front Plant Sci, 2016,7:1-14
doi: 10.3389/fpls.2016.00114 pmid: 26904076 |
[14] |
Ikeda M, Ohme-Takagi M . A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol, 2009,50:970-975
doi: 10.1093/pcp/pcp048 pmid: 19324928 |
[15] |
Tang R M, Zhu W J, Song X Y, Lin X Z, Cai J H, Wang M, Yang Q . Genome-wide identification and function analyses of heat shock transcription factor in potato. Front Plant Sci, 2016,7:490
doi: 10.3389/fpls.2016.00490 pmid: 4836240 |
[16] |
Lin Y X, Jiang H Y, Chu Z X, Tang X L, Zhu S W, Cheng B J . Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics, 2011,12:76-89
doi: 10.1186/1471-2164-12-76 pmid: 3039612 |
[17] |
Ma H, Wang C T, Yang B, Cheng H Y, Wang Z, Mijiti A, Ren C, Qu G H, Zhang H, Ma L . CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer Arietinum L.). Plant Mol Biol Rep, 2016,34:1-14
doi: 10.1007/s11105-015-0892-8 |
[18] |
Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A . Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem, 2009,47:785-795
doi: 10.1016/j.plaphy.2009.05.003 pmid: 19539489 |
[19] |
Kolmos E, Chowa B Y, Pruneda-Pazb J L, Kay S A . Kolmos HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci USA, 2014,111:16173-16177
doi: 10.1073/pnas.1418483111 |
[20] |
Scharf K D, Heider H, Höhfeld I, Lyck R, Schmidt E and Nover L . The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol, 1998,18:2240-2251
doi: 10.3354/ame032011 pmid: 121470 |
[21] | Heerklotz D, Döring P, Bonzelius F . The balance of nuclear import and export determines the intrancellular distribution and function of tomato heat stress transcription factorHsfA2. Mol Cell Biol, 2001,21:1759-1768 |
[22] |
Mishra S K, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf K D . In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Develop, 2002,16:1555-1567
doi: 10.1101/gad.228802 pmid: 12080093 |
[23] |
Ogawa D, Yamaguchi K, Nishiuchi T . High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot, 2007,58:3373-3383
doi: 10.1093/jxb/erm184 |
[24] | Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T . A heat-induced transcription factor,HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol, 2007,143:251-262 |
[25] |
Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S . Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006,48:535-547
doi: 10.1111/j.1365-313X.2006.02889.x pmid: 17059409 |
[26] | Liu H C, Charng Y Y . Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol, 2013,163:276-290 |
[27] | Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Kaskull-Doring P . The heat stress transcription factor HSFA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol, 2006,60:759-772 |
[28] | Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F . Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Gen Genom, 2004,271:11-21 |
[29] | Liu H, Charng Y . Common and distinct functions of Arabidopsis Class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol, 2013,163:276-290 |
[30] |
赵立娜, 张华宁, 段硕楠, 郭秀林, 李国良 . 玉米 ZmHsf04基因的克隆和特性及其对耐热性的调控. 农业生物技术学报, 2017,25:1411-1422
doi: 10.3969/j.issn.1674-7968.2017.09.004 |
Zhao L N, Zhang H N, Duan S N, Guo X L, Li G L . Cloning and characterization of maize (Zea mays) ZmHsf04 gene and its regulating role in thermotolerance. J Agric Biotechnol, 2017,25:1411-1422 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2017.09.004 |
|
[31] | Qin D D, Wu H Y, Peng H R, Yao Y Y, Ni Z F, Li Z X, Zhou C L, Sun Q X . Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 2008,9:432-450 |
[32] |
Shim D, Hwang J U, Lee J, Lee S, Choi Y . Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell, 2009,21:4031-4043
doi: 10.1105/tpc.109.066902 pmid: 20028842 |
[33] |
Zhang S X, Xu Z S, Li P S, Yang L, Wei Y Q, Chen M, Li L C, Zhang G S, Ma Y Z . Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Rep, 2013,31:688-697
doi: 10.1007/s11105-012-0546-z |
[34] |
Chauhan H, Khurana N, Agarwal P, Khurana J P, Khurana P . A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One, 2013,8:e79577
doi: 10.1371/journal.pone.0079577 pmid: 24265778 |
[35] |
Hu X J, Chen D D, McIntyre C L, Fernanda D M, Zhang Z B, Drenth J, Sundaravelpandan K, Chang H P, Xue G P . Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ, 2018,41:79-98
doi: 10.1111/pce.v41.1 |
[36] |
李慧聪, 李国良, 郭秀林 . 玉米热激转录因子基因ZmHsf-Like对逆境胁迫响应的信号途径. 作物学报, 2014,40:622-628
doi: 10.3724/SP.J.1006.2014.00622 |
Li H C, Li G L, Guo X L . Signal transduction pathway of ZmHsf-Like gene responding to different abiotic stresses. Acta Agron Sin, 2014,40:622-628 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00622 |
|
[37] |
李慧聪, 李国良, 郭秀林 . 玉米热激转录因子基因(ZmHsf06)的克隆、表达和定位分析. 农业生物技术学报, 2015,23:41-51
doi: 10.3969/j.issn.1674-7968.2015.01.005 |
Li H C, Li G L, Guo X L . Cloning, expression characteristics and subcellular-location of heat shock transcription factor ZmHsf06 in Zea mays. J Agric Biotech, 2015,23:41-51 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2015.01.005 |
|
[38] |
Li H C, Zhang H N, Li G L, Liu Z H, Zhang Y M, Zhang H M . Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis. Funct Plant Biol, 2015,42:1080-1090
doi: 10.1071/FP15080 |
[39] |
Li H X, Fan R C, Li L B, Wei B, Li G L, Gu L Q, Wang X P, Zhang X Q . Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. Plant Cell Environ, 2014,37:1561-1573
doi: 10.1111/pce.12263 pmid: 243720251 |
[40] |
Gietz D, Jean A S, Woods R A, Schiestl R H . Improved method for high transformation of intact yeast cells. Nucl Acids Res, 1992,20:1425
doi: 10.1093/nar/20.6.1425 pmid: 312198 |
[41] | 赵立娜, 刘子会, 段硕楠, 张园园, 李国良, 郭秀林 . 小麦热激转录因子基因 TaHsfB2d 的克隆和特性及其对耐热性调控. 作物学报, 2018,44:53-62 |
Zhao L N, Liu Z H, Duan S N, Zhang Y Y, Li G L, Guo X L . Cloning and Characterization of heat shock transcription factor gene TaHsfB2d and its regulating role in thermotolerance. Acta Agron Sin, 2018,44:53-62 (in Chinese with English abstract) | |
[42] |
Ogawa D, Yamaguchi K, Nishiuchi T . High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot, 2007,58:3373-3383
doi: 10.1093/jxb/erm184 |
[1] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[2] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[3] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[4] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321. |
[5] | 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127. |
[6] | 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818. |
[7] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[8] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[9] | 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749. |
[10] | 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638. |
[11] | 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379. |
[12] | 陈倩楠,王轲,汤沙,杜丽璞,智慧,贾冠清,赵宝华,叶兴国,刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究[J]. 作物学报, 2018, 44(10): 1423-1432. |
[13] | 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244. |
[14] | 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018, 44(01): 53-62. |
[15] | 赵立娜.段硕楠.张华宁.郭秀林.李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(07): 1021-1029. |
|