欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (12): 1818-1828.doi: 10.3724/SP.J.1006.2018.01818

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探

张玉杰1,2,张园园1,3,张华宁1,秦宁1,2,李国良1,*(),郭秀林1,*()   

  1. 1 河北省农林科学院遗传生理研究所 / 河北省植物转基因中心重点实验室, 河北石家庄 050051
    2河北北方学院, 河北张家口 075000
    3河北师范大学生命科学学院, 河北石家庄 050024
  • 收稿日期:2018-04-19 接受日期:2018-07-20 出版日期:2018-12-12 网络出版日期:2018-08-02
  • 通讯作者: 李国良,郭秀林
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0300408);河北省自然科学基金重点项目(C2016301085);河北省现代农业科技创新工程项目(494-0402-YBN-RDC4);河北省现代农业科技创新工程项目(494-0402-YBN-SVE2);河北省高层次人才项目资助(A201500130)

Characterization and Regulatory Roles in Thermotolerance of Wheat Heat Shock Transcription Factor Gene TaHsfA2e

Yu-Jie ZHANG1,2,Yuan-Yuan ZHANG1,3,Hua-Ning ZHANG1,Ning QIN1,2,Guo-Liang LI1,*(),Xiu-Lin GUO1,*()   

  1. 1 Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, Hebei, China
    2 Hebei North University, Zhangjiakou 075000, Hebei, China
    3 College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2018-04-19 Accepted:2018-07-20 Published:2018-12-12 Published online:2018-08-02
  • Contact: Guo-Liang LI,Xiu-Lin GUO
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300408);the Key Project of Natural Science Foundation of Hebei Province(C2016301085);the Science and Technology Innovation Program for Modern Agriculture in Hebei Province(494-0402-YBN-RDC4);the Science and Technology Innovation Program for Modern Agriculture in Hebei Province(494-0402-YBN-SVE2);the High-level Talent Project of Hebei Province(A201500130)

摘要:

植物热激转录因子(heat shock transcription factor, Hsf)能够通过激活热激蛋白基因的表达而启动热激反应, 在传递热信号以及提高植物耐热性方面发挥重要的调控作用。植物Hsf属多基因家族, 数量因作物不同差异较大。小麦Hsf家族成员多, 特性和功能复杂多样。本文在通过生物信息学推测分析小麦Hsf家族基因数目及其分类的基础上, 从小麦幼叶中同源克隆获得A2亚族成员TaHsfA2e (GenBank登录号为MG700614)的完整编码序列, 序列长1026 bp, 编码341个氨基酸残基, 含完整的DNA结合结构域DBD、核定位信号序列NLS、核输出信号序列NES和激活域AHA。正常条件下TaHsfA2e蛋白质被定位在细胞核。同源分析表明, TaHsfA2e与小麦HsfA6f蛋白相似性最高, 达96%。定量分析表明, TaHsfA2e在小麦多个组织器官中表达量均低, 但在成熟种子中高表达。叶片中TaHsfA2e的表达受37℃热胁迫显著上调, 处理60 min时达峰值, 被SA和H2O2下调。50℃热胁迫下转TaHsfA2e酵母细胞的耐热性显著强于转空载体对照, TaHsfA2e可不同程度提高转基因拟南芥植株的基础耐热性和获得耐热性, 上调热胁迫条件下热相关蛋白基因的表达。

关键词: TaHsfA2e, 表达特性, 亚细胞定位, 遗传转化, 耐热性

Abstract:

As key regulatory genes in the signal pathway responsive to heat stress, plant heat shock transcription factors (Hsfs) can enhance plant thermotolerances by triggering hsp or other relative genes to express. Plant Hsfs belong to multi-genes family, the members are different among varieties. Based on the phylogenetic tree of Hsf proteins from wheat (Triticum aestivum), rice (Oryza sativa) and Arabidopsis, we isolated the TaHsfA2e (GenBank accession number MG700614) from wheat young leaves treated with 37°C for 1.5 h using homologous cloning methods. Sequence analysis showed that the coding sequence (CDS) of TaHsfA2e is 1026 bp in length and encodes 341 amino acid residues. The TaHsfA2e protein was predicted to contain a DNA-binding domain (DBD), a nuclear localization signal (NLS) of KRRRP peptide, a nuclear export signal (NES) of LENLAMNI peptide and an aromatic, large hydrophobic and acidic amino residues (AHA) of CCFWEELLSE peptide, and localized in the nuclei under normal growth conditions. TaHsfA2e shared 96%, 94%, and 94% identities with HsfA6f and HsfA2d from wheat and HsfA2d from Aegilops tauschii, respectively. TaHsfA2e was lowly expressed in majority of tissues and organs but highly expressed in mature seeds of wheat, and the gene expression in leaf was up-regulated by heat shock at 37°C, with the peak value at 60 min after treatment, but down-regulated by salicylic acid or H2O2. TaHsfA2e could be induced by Gal in yeast (Saccharomyces cerevisiae), and yeast overexpressing pYES2-TaHsfA2e showed stronger growth potential than the controls expressing pYES2 after heat shock at 50 °C for 45 min, though all of the yeast growth potential were also decreased after treatment. Both of basal and acquired thermotolerances of transgenic Arabidopsis plants that overexpressed TaHsfA2e were improved, and the expressions of Hsp genes were up-regulated to different degrees. These results are essential for deep understanding biological functions and regulatory mechanism of subclass A2 Hsf members in plants.

Key words: TaHsfA2e, expression characterization, subcellular-localization, genetic transformation, thermotolerance

附表 1

拟南芥耐热性相关基因及其定量分析引物对"

基因
Gene
正向序列
Forward sequence (5°-3°)
反向序列
Reverse sequence (5°-3°)
AtHsp18.2 GCAGATTAGCGGAGAGAGGA CCTTCACTTCTTCCATCTTTGC
AtHsp21 AAGTCCGCTACACCGTTCTC CCAACAATCCGAAAGGAGAG
AtHsfa32 GCGAAGTTGGTTGAGTGGTT GGAGGAACTGAGAACAGATTGG
AtERDJ3A CTCCTGTTTGTATCATTGGTGC TGTGTCCTGAGAACCTGTGG
AtHsp25.3 GACGTCTCTCCTTTCGGATTGT CTCCACTTCCTCCTCTGTTTCTTC
AtHsp70T TGATTGAGGTGAGGATGCC CCACTTCAACGACAAACCC
AtHsp90 CCCTCTCTTCTTCATAAATCAACA CCATCGCAACGAACTTTG
AtHsp101 TGTCTTCAACACTCTGCTCCA CACTTCCATTGTTACTTTCCCAG

图1

小麦TaHsfA2e 的氨基酸序列及其结构域 DBD: Hsf 家族保守DNA 结合域; OD: 寡聚域; NLS: 核定位信号序列; AHA: 激活结构域; NES: 核输出信号序列。"

图2

小麦TaHsfA2e 蛋白质在洋葱表皮细胞中亚细胞定位 A: 明场; B: GFP绿色荧光; C:细胞核DAPI 红色荧光; D: 叠加图像。"

附图1

正常生长条件下幼苗期和开花期不同组织器官中TaHsfA2e 的相对表达水平 每个样本设3次重复, 数据为3个生物学重复平均值±标准误, 幼根中基因的表达量为对照, 设为1。"

图3

37℃热胁迫(A), 0.8 mmol L-1 SA (B)和10 mmol L-1 H2O2 (C)分别处理对小麦叶片TaHsfA2e表达量的影响 数据为3个生物学重复平均值±标准差。0 h作为对照, 相对表达量为“1”。"

图4

50℃热激处理后转基因TaHsfA2e和空载体酵母细胞耐热性观察 A: 30°C下正常生长, B: 50°C热胁迫 45 min, 于30°C恢复生长 3 d; C: 30°C下正常生长测定酵母细胞OD600值; D: 50°C热胁迫 45 min后于30°C恢复生长测定酵母细胞 OD600值。数据为3个生物学重复平均值±标准差。*表示转基因酵母与对照(转空载体)差异显著(P<0.05)"

附图2

RT-PCR检测拟南芥不同转基因株系TaHsfA2e的相对表达"

图5

3个转TaHsfA2e拟南芥株系及野生型的基础耐热性和获得耐热性鉴定 转基因系(8_1, 12_2, 14_19)和野生型种子播种于平皿培养基上, 经3 d黑暗孵育、光照5 d后分别进行热激处理。A: 正常生长的植株; B: 基础耐热性处理的植株(45℃ 40 min, 再于22℃恢复8 d); C: 获得耐热性处理植株(37℃ 1 h, 22℃下恢复2 d, 46℃ 50 min, 最后22℃恢复8 d); D: 转基因株系和野生型在正常生长(CK)、基础耐热性处理(BT)和获得耐热性处理(AT)条件下的存活率, 实验重复3次, 每重复至少15株苗。"

图6

不同热处理后转TaHsfA2e拟南芥及野生型植株叶绿素的含量(A)及相对电导率(B) CK: 正常生长; BT: 基础耐热性处理; AT: 获得耐热性处理。ERC: 相对电导率。数值为至少15株幼苗平均值, 重复3次。"

图7

基础耐热性(BT)和获得耐热性(AT)处理后转TaHsfA2e拟南芥植株中8个热相关蛋白基因的表达 所有BT值为处理后0 h数值、所有AT值为处理后2 h数值, 均以相同热处理的野生型为对照。数值为至少15株幼苗平均值, 重复3次。"

[1] Mittler R, Finka A, Goloubinoff P . How do plants feel the heat? Trends Biochem Sci, 2012,37:118-125
doi: 10.1016/j.tibs.2011.11.007 pmid: 22236506
[2] Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K D . Complexity of the heat stress response in plants. Curr Opin Plant Biol, 2007,10, 310-316
doi: 10.1016/j.pbi.2007.04.011 pmid: 17482504
[3] Nover L, Scharf K D, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley W B . The HSF world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones, 1996,1:215-223
doi: 10.1379/1466-1268(1996)0012.3.CO;2 pmid: 9222607
[4] Guo M, Liu H J. Ma X, Luo D X, Gong Z H, Lu M H . The plant heat stress transcription factors (HSFs): structure, regulation and function in response to aboitic stresses. Front Plant Sci, 2016,7:114
doi: 10.3389/fpls.2016.00114 pmid: 26904076
[5] Xue G P, Sadat S, Drenth J, Mclntyre C L . The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot, 2014,65:539-557
doi: 10.1093/jxb/ert399 pmid: 24323502
[6] Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K . Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006,48:535-547
doi: 10.1111/j.1365-313X.2006.02889.x pmid: 17059409
[7] Heerklotz D, Döring P, Bonzelius F . The balance of nuclear import and export determines the intrancellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol, 2001,21:1759-1768
doi: 10.1128/MCB.21.5.1759-1768.2001
[8] Liu H C, Liao H T, Charng Y Y . The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ, 2011,34:738-751
doi: 10.1111/j.1365-3040.2011.02278.x pmid: 21241330
[9] Wunderlich M, Groß-Hardt R, Schöff F . Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA. Plant Mol Biol, 2014,85:541-550
doi: 10.1007/s11103-014-0202-0 pmid: 24874772
[10] Ikeda M, Mitsuda N, Ohme-Takagi M . Arabidopsis HsfB1 and HsfB2b act as repressors for the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol, 2011,157:1243-1254
[11] Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Schöffl F . Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant, 2009,2:152-165
doi: 10.1093/mp/ssn095 pmid: 19529832
[12] Zhu X, Thalor S K, Takahashi Y, Berberich T, Kusano T . An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant Cell Environ, 2012,35:2014-2030
doi: 10.1111/j.1365-3040.2012.02533.x pmid: 22571635
[13] Guo M, Liu H J, Ma X . The plant heat stress transcription factors (HSFs): structure, regulation and function in response to aboitic stresses. Front Plant Sci, 2016,7:1-14
doi: 10.3389/fpls.2016.00114 pmid: 26904076
[14] Ikeda M, Ohme-Takagi M . A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol, 2009,50:970-975
doi: 10.1093/pcp/pcp048 pmid: 19324928
[15] Tang R M, Zhu W J, Song X Y, Lin X Z, Cai J H, Wang M, Yang Q . Genome-wide identification and function analyses of heat shock transcription factor in potato. Front Plant Sci, 2016,7:490
doi: 10.3389/fpls.2016.00490 pmid: 4836240
[16] Lin Y X, Jiang H Y, Chu Z X, Tang X L, Zhu S W, Cheng B J . Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics, 2011,12:76-89
doi: 10.1186/1471-2164-12-76 pmid: 3039612
[17] Ma H, Wang C T, Yang B, Cheng H Y, Wang Z, Mijiti A, Ren C, Qu G H, Zhang H, Ma L . CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer Arietinum L.). Plant Mol Biol Rep, 2016,34:1-14
doi: 10.1007/s11105-015-0892-8
[18] Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A . Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem, 2009,47:785-795
doi: 10.1016/j.plaphy.2009.05.003 pmid: 19539489
[19] Kolmos E, Chowa B Y, Pruneda-Pazb J L, Kay S A . Kolmos HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci USA, 2014,111:16173-16177
doi: 10.1073/pnas.1418483111
[20] Scharf K D, Heider H, Höhfeld I, Lyck R, Schmidt E and Nover L . The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol, 1998,18:2240-2251
doi: 10.3354/ame032011 pmid: 121470
[21] Heerklotz D, Döring P, Bonzelius F . The balance of nuclear import and export determines the intrancellular distribution and function of tomato heat stress transcription factorHsfA2. Mol Cell Biol, 2001,21:1759-1768
[22] Mishra S K, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf K D . In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Develop, 2002,16:1555-1567
doi: 10.1101/gad.228802 pmid: 12080093
[23] Ogawa D, Yamaguchi K, Nishiuchi T . High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot, 2007,58:3373-3383
doi: 10.1093/jxb/erm184
[24] Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T . A heat-induced transcription factor,HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol, 2007,143:251-262
[25] Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S . Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006,48:535-547
doi: 10.1111/j.1365-313X.2006.02889.x pmid: 17059409
[26] Liu H C, Charng Y Y . Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol, 2013,163:276-290
[27] Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Kaskull-Doring P . The heat stress transcription factor HSFA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol, 2006,60:759-772
[28] Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F . Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Gen Genom, 2004,271:11-21
[29] Liu H, Charng Y . Common and distinct functions of Arabidopsis Class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol, 2013,163:276-290
[30] 赵立娜, 张华宁, 段硕楠, 郭秀林, 李国良 . 玉米 ZmHsf04基因的克隆和特性及其对耐热性的调控. 农业生物技术学报, 2017,25:1411-1422
doi: 10.3969/j.issn.1674-7968.2017.09.004
Zhao L N, Zhang H N, Duan S N, Guo X L, Li G L . Cloning and characterization of maize (Zea mays) ZmHsf04 gene and its regulating role in thermotolerance. J Agric Biotechnol, 2017,25:1411-1422 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2017.09.004
[31] Qin D D, Wu H Y, Peng H R, Yao Y Y, Ni Z F, Li Z X, Zhou C L, Sun Q X . Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics, 2008,9:432-450
[32] Shim D, Hwang J U, Lee J, Lee S, Choi Y . Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell, 2009,21:4031-4043
doi: 10.1105/tpc.109.066902 pmid: 20028842
[33] Zhang S X, Xu Z S, Li P S, Yang L, Wei Y Q, Chen M, Li L C, Zhang G S, Ma Y Z . Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol Biol Rep, 2013,31:688-697
doi: 10.1007/s11105-012-0546-z
[34] Chauhan H, Khurana N, Agarwal P, Khurana J P, Khurana P . A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One, 2013,8:e79577
doi: 10.1371/journal.pone.0079577 pmid: 24265778
[35] Hu X J, Chen D D, McIntyre C L, Fernanda D M, Zhang Z B, Drenth J, Sundaravelpandan K, Chang H P, Xue G P . Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ, 2018,41:79-98
doi: 10.1111/pce.v41.1
[36] 李慧聪, 李国良, 郭秀林 . 玉米热激转录因子基因ZmHsf-Like对逆境胁迫响应的信号途径. 作物学报, 2014,40:622-628
doi: 10.3724/SP.J.1006.2014.00622
Li H C, Li G L, Guo X L . Signal transduction pathway of ZmHsf-Like gene responding to different abiotic stresses. Acta Agron Sin, 2014,40:622-628 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00622
[37] 李慧聪, 李国良, 郭秀林 . 玉米热激转录因子基因(ZmHsf06)的克隆、表达和定位分析. 农业生物技术学报, 2015,23:41-51
doi: 10.3969/j.issn.1674-7968.2015.01.005
Li H C, Li G L, Guo X L . Cloning, expression characteristics and subcellular-location of heat shock transcription factor ZmHsf06 in Zea mays. J Agric Biotech, 2015,23:41-51 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2015.01.005
[38] Li H C, Zhang H N, Li G L, Liu Z H, Zhang Y M, Zhang H M . Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis. Funct Plant Biol, 2015,42:1080-1090
doi: 10.1071/FP15080
[39] Li H X, Fan R C, Li L B, Wei B, Li G L, Gu L Q, Wang X P, Zhang X Q . Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. Plant Cell Environ, 2014,37:1561-1573
doi: 10.1111/pce.12263 pmid: 243720251
[40] Gietz D, Jean A S, Woods R A, Schiestl R H . Improved method for high transformation of intact yeast cells. Nucl Acids Res, 1992,20:1425
doi: 10.1093/nar/20.6.1425 pmid: 312198
[41] 赵立娜, 刘子会, 段硕楠, 张园园, 李国良, 郭秀林 . 小麦热激转录因子基因 TaHsfB2d 的克隆和特性及其对耐热性调控. 作物学报, 2018,44:53-62
Zhao L N, Liu Z H, Duan S N, Zhang Y Y, Li G L, Guo X L . Cloning and Characterization of heat shock transcription factor gene TaHsfB2d and its regulating role in thermotolerance. Acta Agron Sin, 2018,44:53-62 (in Chinese with English abstract)
[42] Ogawa D, Yamaguchi K, Nishiuchi T . High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot, 2007,58:3373-3383
doi: 10.1093/jxb/erm184
[1] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[2] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[3] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[4] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[5] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[6] 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818.
[7] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[8] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[9] 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749.
[10] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[11] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[12] 陈倩楠,王轲,汤沙,杜丽璞,智慧,贾冠清,赵宝华,叶兴国,刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究[J]. 作物学报, 2018, 44(10): 1423-1432.
[13] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
[14] 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018, 44(01): 53-62.
[15] 赵立娜.段硕楠.张华宁.郭秀林.李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(07): 1021-1029.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!