欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 118-130.doi: 10.3724/SP.J.1006.2019.84043

• 耕作栽培·生理生化 • 上一篇    下一篇

低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响

常博文1,2(),钟鹏2,刘杰2,*(),唐中华3,高亚冰2,于洪久2,郭炜2   

  1. 1 黑龙江省农业科学院博士后科研工作站, 黑龙江哈尔滨 150001
    2 黑龙江省农业科学院农村能源研究所, 黑龙江哈尔滨 150001
    3 东北林业大学森林植物生态学教育部重点实验室, 黑龙江哈尔滨 150001
  • 收稿日期:2018-03-22 接受日期:2018-08-20 出版日期:2018-09-28 网络出版日期:2018-09-28
  • 通讯作者: 刘杰
  • 基金资助:
    本研究由黑龙江省农业科学院课题(2017BZ01);哈尔滨市科技创新人才研究专项和黑龙江省育繁推一体化项目资助(2017RAQYJ135)

Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut

Bo-Wen CHANG1,2(),Peng ZHONG2,Jie LIU2,*(),Zhong-Hua TANG3,Ya-Bing GAO2,Hong-Jiu YU2,Wei GUO2   

  1. 1 Postdoctoral Research Station, Heilongjiang Academy of Agricultural Sciences, Harbin 150001, Heilongjiang, China
    2 Rural Energy Institute, Heilongjiang Academy of Agricultural Science, Harbin 150001, Heilongjiang, China
    3 Key Laboratory of Forest Plant Ecology Ministry of Education, Northeast Forestry University, Harbin 150001, Heilongjiang, China
  • Received:2018-03-22 Accepted:2018-08-20 Published:2018-09-28 Published online:2018-09-28
  • Contact: Jie LIU
  • Supported by:
    This study was supported by the Program of Heilongjiang Academy of Agricultural Sciences(2017BZ01);Harbin Special Fund for Research of Innovative Talents of Science and Technology, and Heilongjiang Integration Program of “Breeding, Reproduction and Pushing”.(2017RAQYJ135)

摘要:

低温是影响我国广大花生产区春花生发芽的主要因素之一。本文以不同生态区的30个花生品种为实验材料, 研究了倒春寒天气诱导的低温胁迫对花生出苗的影响, 以出苗率为标准筛选出4个耐低温的花生品种(阜花17、阜花12、冀花16、冀花18)和4个不耐低温的品种(鲁花11、白沙1016、正农黑花生1号、白玉)于温室测定了4℃低温和赤霉素(GA3)处理后种子发芽相关指标和幼苗生理指标。结果表明, 4℃对耐低温花生品种发芽率、发芽指数影响不显著, 但种子活力指数和芽长呈现下降趋势; 4℃处理后, 不耐低温品种幼苗相对膜透性和MDA含量上升幅度更高, 耐低温品种幼苗的可溶性糖和游离脯氨酸含量上升幅度更大。GA3显著促进4℃低温处理后花生种子萌发和种子活力, 抑制了花生幼苗在低温处理后相对膜透性和丙二醛的上升, 提高了可溶性糖、可溶性蛋白、游离脯氨酸含量。研究表明, 赤霉素促进低温胁迫下种子萌发和幼苗生长的最佳浓度是300 μmol L -1。发芽率与相对膜透性和丙二醛含量显著负相关, 与可溶性糖、脯氨酸含量显著正相关。温度影响发芽率的品种间差异较大, 常温下赤霉素对不同耐低温品种的发芽率影响较小。本研究为耐低温花生种质资源创新和新品种培育提供了理论依据, 为研究赤霉素对不同花生品种耐低温性影响的生理机制提供了基础。

关键词: 花生, 倒春寒, 低温胁迫, 赤霉素, 种子萌发, 幼苗生理响应

Abstract:

From 30 peanut cultivars, we screened four cultivars with strong low-temperature-resistance (Fuhua 17, Fuhua 12, Jihua 16, Jihua 18) and four cultivars with weak low-temperature-resistance (Luhua 11, Baisha 1016, Zhengnongheihuasheng 1, Baiyu), and measured related indicators of seed germination and physiological indexes of seedlings under low temperature (4oC) and GA3 treatments. There was no significant difference in rate of emergence and germination index of strong low-temperature- resistant cultivars with or without 4oC treatments, but decrease in hypocotyl length and seed vigor under low temperature. The relative membrane permeability and MDA content of four cultivars with weak low-temperature-resistance had higher ascensional range. The contents of soluble sugar, soluble protein and free proline of cultivars with strong low-temperature resistance had smaller reduction. GA3 facilitated the rate of emergence and seed vigor of all peanut seeds, as well as promoted the contents of soluble sugar, soluble protein and free proline of seedlings, but suppressed the uptrend of relative membrane permeability and MDA content of peanut seedlings under low temperature. The best concentration of GA3 promoting seed germination and seedling growth of peanut with low temperature treatment is 300 μmol L -1. The rate of emergence had significantly negative correlation with relative membrane permeability and MDA, and obviously positive correlation with the contents of soluble sugar or free proline. The temperature had greater influence on germination rate, but the effect of gibberellin on difference of germination rate between different varieties was smaller. This study provided a theoretical basis for germplasm resources innovation and breeding new peanut cultivars with strong low-temperature resistance, as well as for studying the physiological mechanism of gibberellin on chilling tolerance of different peanut varieties.

Key words: peanut, late spring chilling, low-temperature stress, gibberellin, seed germination, seedling physiological responses

表1

黑龙江省倒春寒等级指标"

倒春寒等级
Late spring chilling grades
最大降温幅度ΔT
Maximum cooling rate (oC)
气温距平(δT)
Temperature departure (oC)
持续时间
Consecutive time (d)
轻微 Light 3.0 < ΔT24 ≤ 5.0 or 5.0 < ΔT48 ≤ 8.0 -2.0 ≤ δT < -1.0 ≥ 3
中度偏轻 Moderate partial light 5.0 < Δ.0erate or 8.0 < Δ.0erate -3.0 ≤ δT < -2.0 ≥ 3
中度 Moderate 8.0 < ΔT24 ≤ 10.0 or 10.0 < ΔT48 ≤ 12.0 -5.0 ≤ δT < -3.0 ≥ 5
严重 Severe 10.0 < ΔT24 or 12.0 < ΔT48 δT < -5.0 ≥ 5

图1

2017年5月至6月气温变化 MAX T: 日最高气温; MIN T: 日最低气温; Average: 日平均气温。"

表2

播种1个月后各花生品种出苗率"

品种
Cultivar
出苗率
Seedling emergence rate (%)
标准误差
Standard error
差异显著性
Sig. 5%
白玉 Baiyu 45.51 8.43 a
正农黑花生1号 Zhengnongheihuasheng 1 49.79 10.08 ab
白沙1016 Baisha 1016 50.28 8.52 ab
七彩花生 Qicaihuasheng 58.63 3.89 bc
鲁花11 Luhua 11 59.63 9.76 bcd
花育22 Huayu 22 67.33 10.25 cde
荣丰8号 Rongfeng 8 68.42 9.58 cde
丰花5号 Fenghua 5 69.29 5.32 de
丰花3号 Fenghua 3 72.75 5.03 ef
冀花11 Jihua 11 72.99 6.34 ef
丰花1号 Fenghua 1 73.30 4.82 efg
海花1号 Haihua 1 73.54 3.22 efg
中农108 Zhongnong 108 74.00 8.92 efg
山花10号 Shanhua 10 74.33 3.24 efg
中花800 Zhonghua 800 75.00 4.77 efg
拔二罐 Baerguan 76.38 6.64 efgh
花育23 Huayu 23 81.73 4.38 fghi
品种
Cultivar
出苗率
Seedling emergence rate (%)
标准误差
Standard error
差异显著性
Sig. 5%
冀花4号 Jihua 4 82.06 4.22 fghi
冀花9号 Jihua 9 82.63 1.04 fghij
冀花8号 Jihua 8 84.22 4.13 ghijk
寿花820 Shouhua 820 86.38 5.66 hijkl
花育36 Huayu 36 89.71 4.09 ijkl
四粒红 Silihong 90.19 5.24 ijkl
冀花10号 Jihua 10 90.95 2.74 ijkl
花育20 Huayu 20 91.43 2.74 ijkl
冀花324 Jihua 324 93.40 1.89 jkl
冀花18 Jihua 18 94.56 4.16 kl
冀花16 Jihua 16 95.27 1.49 l
阜花12 Fuhua 12 95.36 3.27 l
阜花17 Fuhua 17 97.22 1.26 l

图2

不同温度对花生种子发芽率的影响 FH17: 阜花17; FH12: 阜花12; JH16: 冀花16; JH18: 冀花18; BS1016: 白沙1016; LH11: 鲁花11; HHS: 正农黑花1号; BHS: 白玉花生。图柱上不同字母表示处理之间的0.05水平差异显著。"

表3

低温胁迫和GA3对花生种子发芽率、发芽指数、芽长和种子活力的影响"

花生品种
Peanut cultivar
对照组
Control group
处理组 Treatment group
4℃ 4℃+100
μmol L-1 GA3
4℃+200
μmol L-1 GA3
4℃+300
μmolL-1 GA3
发芽率Seed germination rate (%)
阜花17 Fuhua 17 98.00±1.27 ab 87.33±1.73 b 89.33±1.04 b 91.67±0.99 b 95.33±1.46 b
阜花12 Fuhua 12 97.33±1.44 ab 85.33±1.02 b 89.33±2.13 b 92.33±0.57 b 94.00±0.98 b
冀花16 Jihua 16 98.67±0.67 ab 85.00±1.67 b 90.33±2.06 b 92.33±1.33 b 94.00±1.04 b
冀花18 Jihua 18 99.00±1.09 b 84.67±2.56 b 90.00±2.01 b 93.67±1.77 b 95.00±2.76 b
白沙1016 Baisha 1016 99.00±0.78 b 48.33±4.37 a 51.67±3.22 a 57.00±4.06 a 60.67±1.34 a
鲁花11 Luhua 11 96.33±1.78 a 50.67±5.34 a 54.00±2.35 a 60.67±3.33 a 65.33±3.32 a
正农黑花生1号 Zhengnongheihuasheng 1 99.00±0.33 b 48.67±4.43 a 54.00±4.78 a 56.00±5.49 a 60.67±3.97 a
白玉Baiyu 98.67±1.08 ab 45.67±4.56 a 50.00±1.98 a 54.33±3.46 a 61.67±3.22 a
芽长Hypocotyl length (cm)
阜花17 Fuhua 17 5.36±0.46 a 4.08±0.55 d 4.23±0.33 c 4.48±0.18 d 4.94±0.25 c
阜花12 Fuhua 12 4.98±0.45 a 3.55±0.34 cd 3.76±0.26 c 4.01±0.18 c 4.66±0.21 c
冀花16 Jihua 16 5.23±0.22 a 3.46±0.11 cd 3.99±0.32 c 4.31±0.15 cd 4.79±0.54 c
冀花18 Jihua 18 5.06±0.33 a 3.33±0.21 c 3.79±0.14 c 4.29±0.21 cd 4.48±0.28 c
白沙1016 Baisha 1016 5.16±0.42 a 1.88±0.09 a 2.06±0.10 a 2.14±0.13 a 2.36±0.18 a
鲁花11 Luhua 11 4.92±0.46 a 2.19±0.08 b 2.36±0.09 b 2.65±0.12 b 2.95±0.15 b
正农黑花生1号 Zhengnongheihuasheng 1 4.86±0.50 a 2.21±0.09 b 2.37±0.21 b 2.56±0.13 b 2.83±0.14 b
白玉 Baiyu 5.26±0.45 a 2.06±0.12 ab 2.24±0.21 ab 2.41±0.19 ab 2.61±0.25 ab
发芽指数 Germination index
阜花17 Fuhua 17 21.34±2.14 a 16.24±1.24 b 17.89±2.45 b 18.56±1.11 b 20.55±2.01 b
阜花12 Fuhua 12 20.16±1.99 a 15.06±1.45 b 16.63±1.84 b 17.94±1.86 b 19.34±1.08 b
冀花16 Jihua 16 21.33±2.01 a 16.12±1.33 b 17.64±1.04 b 18.48±1.75 b 20.26±1.88 b
冀花18 Jihua 18 22.21±1.99 a 14.90±1.23 b 15.78±1.64 b 17.30±1.13 b 19.10±1.86 b
白沙1016 Baisha 1016 20.55±2.01 a 9.00±1.08 a 10.35±1.44 a 11.56±1.07 a 12.62±2.33 a
鲁花11 Luhua 11 19.17±2.88 a 10.72±1.64 a 11.69±1.37 a 13.16±1.05 a 14.97±1.75 a
正农黑花生1号 Zhengnongheihuasheng 1 20.22±2.54 a 9.90±1.85 a 11.00±1.32 a 12.02±1.56 a 13.34±1.33 a
白玉 Baiyu 19.31±2.04 a 9.38±1.15 a 10.94±1.46 a 12.26±1.35 a 13.15±1.78 a
种子活力指数 Seed vigor
阜花17 Fuhua 17 114.38±10.11 b 66.28±6.91 c 75.67±5.90 d 83.17±7.45 c 101.52±8.99 c
阜花12 Fuhua 12 100.38±8.45 ab 53.46±6.23 bc 62.53±5.34 c 71.94±7.89 c 90.12±10.11 c
冀花16 Jihua 16 111.58±10.58 ab 55.78±6.03 bc 70.38±5.84 cd 79.65±7.77 c 97.05±8.09 c
冀花18 Jihua 18 112.39±8.23 b 49.61±5.89 b 59.81±7.82 c 74.21±8.19 c 85.56±8.74 c
白沙1016 Baisha 1016 106.04±11.56 ab 16.92±3.65 a 21.33±2.98 a 24.74±3.02 a 29.78±2.00 a
鲁花11 Luhua11 93.15±10.67 a 23.68±3.98 a 27.70±2.76 b 33.69±3.14 b 42.35±4.23 b
正农黑花生1号 Zhengnongheihuasheng 1 99.46±11.49 ab 21.67±2.89 a 25.97±3.01 ab 31.85±2.76 b 39.35±3.45 b
白玉 Baiyu 101.59±10.97 ab 19.32±2.05 a 24.50±2.86 ab 29.55±3.56 ab 34.33±3.89 ab

表4

低温胁迫和GA3对花生幼苗相对膜透性、丙二醛、可溶性糖、可溶性蛋白和游离脯氨酸含量的影响"

生理指标
Physical
indexes
花生品种
Peanut cultivar
对照组
Control group
处理组Treatment group
4℃ 4℃+100
μmol L-1 GA3
4℃+200
μmol L-1 GA3
4℃+300
μmol L-1 GA3
相对膜透性
Relative membrane permeability (%)
阜花17 Fuhua 17 17.10±1.89 ab 24.63±2.08 a 21.63±1.65 a 20.33±1.32 a 18.71±1.16 a
阜花12 Fuhua 12 18.50±1.92 b 26.98±1.36 a 24.56±1.01 b 22.68±1.06 ab 20.22±1.45 ab
冀花16 Jihua16 15.92±1.65 a 26.88±2.02 a 25.69±1.54 b 23.79±0.98 b 21.25±0.99 b
冀花18 Jihua 18 15.32±1.54 a 25.54±1.85 a 24.46±1.99 ab 23.03±1.33 b 21.46±1.25 b
白沙1016 Baisha 1016 16.43±1.98 ab 31.23±1.89 b 30.36±1.45 c 28.46±1.85 c 26.18±1.28 c
鲁花11 Luhua 11 17.45±2.01 ab 31.23±1.97 b 30.56±1.67 c 28.12±1.11 c 26.54±1.98 c
正农黑花生1号
Zhengnongheihuasheng 1
17.95±1.85 ab
30.91±1.16 b
28.63±1.22 c
27.56±1.00 c
25.87±1.18 c
白玉Baiyu 15.99±1.89 a 30.88±1.96 b 29.36±1.02 c 27.98±1.45 c 26.87±1.08 c
丙二醛含量
MDA content
(μmol g-1 FW-1)
阜花17 Fuhua 17 7.13±0.95 a 9.56±1.04 a 8.66±0.83 a 7.84±0.66 a 7.16±0.58 a
阜花12 Fuhua 12 7.56±0.96 a 9.84±0.68 a 8.92±0.51 a 8.06±0.53 a 7.98±0.73 a
冀花16 Jihua 16 6.35±0.83 a 10.19±1.01 a 9.13±0.77 a 8.46±0.49 a 7.39±0.50 a
冀花18 Jihua 18 6.84±0.77 a 10.23±0.93 a 9.04±1.00 a 8.16±0.67 a 7.28±0.63 a
白沙1016 Baisha 1016 6.45±0.99 a 19.03±0.95 b 17.85±0.73 b 16.32±0.93 c 14.88±1.06 c
鲁花11 Luhua 11 7.26±1.01 a 18.32±0.99 b 16.98±0.84 b 15.36±0.56 bc 13.86±0.99 bc
正农黑花生1号
Zhengnongheihuasheng 1
7.06±0.93 a
19.26±0.58 b
16.54±1.05 b
14.46±0.50 b
11.65±1.46 b
白玉 Baiyu 6.98±0.95 a 19.69±0.98 b 17.05±1.51 b 15.24±0.73 bc 12.74±1.22 bc
可溶性糖
Soluble sugar content (mg g-1 FW-1)
阜花17 Fuhua 17 7.46±1.95 b 18.75±1.49 b 21.36±0.83 b 24.68±1.66 bc 29.00±1.28 b
阜花12 Fuhua 12 7.96±1.36 b 18.32±1.38 b 20.69±0.51 b 24.12±1.53 bc 28.56±1.73 b
冀花16 Jihua 16 8.63±1.26 b 17.11±1.51 b 21.63±0.77 b 25.55±1.49 c 27.36±1.00 b
冀花18 Jihua 18 7.78±1.53 b 18.56±1.43 b 20.45±1.00 b 22.69±1.67 b 28.33±1.63 b
白沙1016 Baisha 1016 5.55±0.99 ab 8.78±1.95 a 10.96±0.73 a 12.15±1.90 a 14.15±1.56 a
鲁花11 Luhua 11 4.99±1.01 a 8.82±1.49 a 10.65±0.84 a 12.21±1.56 a 14.54±0.99 a
正农黑花生1号
Zhengnongheihuasheng 1
5.87±0.93 ab
9.74±1.28 a
11.96±1.05 a
13.33±1.51 a
15.78±1.46 a
白玉Baiyu 6.45±1.34 ab 8.64±1.48 a 11.62±1.51 a 13.05±1.73 a 14.51±1.22 a
生理指标
Physical
indexes
花生品种
Peanut cultivar
对照组
Control group
处理组Treatment group
4℃ 4℃+100
μmol L-1 GA3
4℃+200
μmol L-1 GA3
4℃+300
μmol L-1 GA3
可溶性蛋白
Soluble protein content (μmol g-1 FW-1)
阜花17 Fuhua 17 16.49±2.09 a 25.45±0.98 b 26.85±1.65 b 27.96±1.66 b 29.64±1.28 b
阜花12 Fuhua 12 17.68±1.22 a 23.78±0.76 ab 26.45±1.01 c 28.65±1.53 b 30.77±1.73 b
冀花16 Jihua 16 17.45±2.52 a 24.36±1.22 ab 25.85±1.54 bc 26.56±1.49 ab 29.86±1.00 b
冀花18 Jihua 18 16.12±2.06 a 25.88±1.85b 26.74±1.99 b 27.65±1.67 b 30.55±1.03 b
白沙1016 Baisha 1016 18.02±1.98 a 23.71±1.89 ab 24.56±1.45 ab 25.74±1.23 ab 26.16±1.56 a
鲁花11 Luhua 11 17.68±2.01 a 23.52±1.67 ab 23.65±1.67 ab 24.31±1.56 a 26.99±0.99 a
正农黑花生1号
Zhengnongheihuasheng 1
16.59±1.85 a
22.34±1.56 a
23.99±1.35 ab
24.15±1.50 a
26.59±1.46 a
白玉Baiyu 17.66±2.68 a 21.90±1.96 a 23.06±1.02 a 23.94±1.73 a 25.35±1.22 a
游离脯氨酸
Free proline
(μmol g-1 FW-1)
阜花17 Fuhua 17 60.01±7.23 a 83.95±7.24 a 100.65±6.23 ab 112.14±8.66 ab 135.63±7.85 bc
阜花12 Fuhua 12 65.99±7.01 a 85.45±8.36 a 99.46±7.12 ab 116.32±8.12 b 140.63±7.78 c
冀花16 Jihua 16 61.23±8.96 a 86.56±8.11 a 101.25±7.52 ab 110.36±7.78 ab 136.44±8.33 bc
冀花18 Jihua 18 59.46±8.25 a 80.11±8.46 a 103.66±6.66 b 120.56±8.36 b 133.78±7.55 b
白沙1016 Baisha 1016 63.19±4.48 a 78.25±7.12 a 90.26±7.16 a 108.36±7.45 ab 122.32±6.06 ab
鲁花11 Luhua 11 61.85±6.85 a 79.33±7.56 a 90.29±8.56 a 104.85±6.21 a 118.62±7.60 a
正农黑花生1号
Zhengnongheihuasheng 1
58.36±6.99 a
74.63±7.98 a
91.29±7.31 a
102.24±6.65 a
121.55±8.32 ab
白玉 Baiyu 62.45±7.11 a 79.35±8.24 a 95.11±8.56 ab 104.15±7.12 a 119.62±8.41 a

表5

种子萌发相关指标与幼苗生理生化指标的相关系数"

GR GI SV HL RMP MDA SS SP FP
发芽率GR 1
发芽指数GI 0.935** 1
种子活力指数SV 0.923** 0.982** 1
芽长HL 0.961** 0.936** 0.964** 1
相对膜透性RMP -0.923** -0.888** -0.938** -0.981** 1
MDA含量 MDA -0.997** -0.934** -0.934** -0.972** 0.943** 1
可溶性糖含量SS 0.973** 0.872** 0.897** 0.970** -0.960** -0.983** 1
可溶性蛋白含量SP 0.742* 0.556 0.583 0.737* -0.718* -0.742* 0.829* 1
游离脯氨酸含量FP 0.864** 0.882** 0.810* 0.820* -0.745* -0.834* 0.779* 0.64 1

表6

效应因子正态分布检验"

A B C Shapiro-Wilk检验 Shapiro-Wilk test
统计量Statistic 自由度df 显著性Sig.
耐低温品种
Low-temperature tolerant
varieties (A1)
对照Control 0 0.966 4 0.814
300 μmol L-1 0.873 4 0.310
4℃ 0 0.876 4 0.322
300 μmol L-1 0.729 4 0.024
不耐低温品种
Low-temperature susceptible varieties (A2)
对照Control 0 0.827 4 0.161
300 μmol L-1 0.917 4 0.519
4℃ 0 0.965 4 0.811
300 μmol L-1 0.791 4 0.086

表7

不同效应因子交互效应方差分析结果"

效应因子
Source
显著性
Sig.
A 0.000
B 0.000
C 0.000
A×B 0.000
A×C 0.011
B×C 0.000
A×B×C 0.011

表8

效应因子交互作用简单效应检验"

效应因子
Source
F
F-value
显著性
Sig.
B WITHIN A1 3.23 0.084
B WITHIN A2 77.70 0.000
C WITHIN A1 1.19 0.286
C WITHIN A2 2.52 0.124
[1] 王梓, 徐军亮, 魏红旭 . 中国“倒春寒”天气的发生及对树木春季生长影响. 北方园艺, 2015, ( 16):195-201.
doi: 10.11937/bfyy.201516046
Wang Z, Xu J L, Wei H X . Spring frost following warn spell and its effect on the growth of the tree in spring. Nor Hortic, 2015, ( 16):195-201 (in Chinese with English abstract).
doi: 10.11937/bfyy.201516046
[2] Bedi S, Basra A S . Chilling injury in germination seeds: basic mechanisms and agricultural implications. Seed Sci Res, 1993,4:219-229.
doi: 10.1017/S0960258500001847
[3] 韩国军, 张春光, 马丰山, 赵兴楠 . JSR低温胁迫对植物生理应答分子机制的进展. 长春师范学院学报(自然科学版), 2008,27(6):71-74.
Han G J, Zhang C G, Ma F S, Zhao X N . Advance in the mechanism of physical molecular responses of plants to low temperature stress. J Changchun Norm Univ (Nat Sci Edn), 2008,27(6):71-74 (in Chinese with English abstract).
[4] 颜启传 . 种子学. 北京: 中国农业出版社, 2001. 97-102.
Yan Q C . Seed Science. Beijing: China Agriculture Press, 2001. pp 97-102(in Chinese).
[5] 封海胜 . 花生种子吸胀间耐低温性鉴定. 中国油料, 1991, ( 1):69-72.
Feng H S . Identification of low temperature resistance of peanut in seed imbibition stage. Oil Crop Chin, 1991, ( 1):69-72 (in Chinese).
[6] 唐月异, 王传堂, 高华援, 凤桐, 张树伟, 王秀贞, 张建成, 禹山林 . 花生种子吸胀期间耐低温性及其与品质性状的相关研究. 核农学报, 2011,25:436-442.
Tang Y Y, Wang C T, Gao H Y, Feng T, Zhang S W, Wang X Z, Zhang J C, Yu S L . Low temperature tolerance during seed imbibition and its relationship to main quality traits in peanut. J Nucl Agric Sci, 2011,25:436-442 (in Chinese with English abstract).
[7] Chen N, Yang Q L, Hu D Q, Pan L J, Chi X Y, Chen M N, Yang Z, Wang T, Wang M, He Y N, Yu S L . Gene expression profiling and identification of resistance genes to low temperature in leaves of peanut (Arachis hypogaea L.). Sci Hortic, 2014,169:214-225.
doi: 10.1016/j.scienta.2014.01.043
[8] Gashi B, Abdullai K, Mata V, Kongjika E . Effect of gibberellic acid and potassium nitrate on seed germination of the resurrection plants Ramonda serbica and Ramonda nathaliae. Afr J Biotechnol, 2012,11:4537-4542.
[9] 吕桂兰, 王庆祥 . 在低温条件下赤霉素和激动素对大豆种子萌发的影响. 辽宁农业科学, 1999, ( 4):9-11.
Lyu G L, Wang Q X . Effect of gibberellin and kinetin on seed germination of soybean under low temperature. Liaoning Agric Sci, 1999, ( 4):9-11 (in Chinese).
[10] 张华微, 栾雨时, 张匀 . 促进越橘种子发芽的研究. 北方园艺, 2006, ( 5):41-42.
doi: 10.3969/j.issn.1001-0009.2006.05.022
Zhang H W, Luan Y S, Zhang Y . Study on the improvement of blueberry seed germination. Nor Hortic, 2006, ( 5):41-42 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-0009.2006.05.022
[11] Hedden P, Phillips A L . Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol, 2000,11:130-137.
doi: 10.1016/S0958-1669(00)00071-9 pmid: 10753762
[12] Brooking I R, Cohen D . Gibberellin-induced flowering in small tubers of Zantedeschia, ‘Black Magic’. Sci Hortic, 2002,95:63-73.
doi: 10.1016/S0304-4238(02)00018-3
[13] Joly C, Maftah A, Riou-Khamlichi C . Alteration of gibberellin response in transgenic tobacco plants which express a human Lewis fucosyltransferase. Plant Physiol Biochem, 2004,42:629-637.
doi: 10.1016/j.plaphy.2004.03.011 pmid: 15331092
[14] 刘永庆 , Bino R J, Karssen C M. 赤霉素与脱落酸对番茄种子萌发中细胞周期的调控. 植物学报, 1995,37:274-282.
doi: 10.1007/BF02007173
Liu Y Q, Bino R J, Karssen C M . GA and ABA regulation on the cell cycle in germination of tomato seeds. Acta Bot Sin, 1995,37:274-282 (in Chinese with English abstract).
doi: 10.1007/BF02007173
[15] 吕彪, 许耀照, 王治江, 范艳玲, 郁映君 . 聚乙二醇胁迫下赤霉素浸种对番茄种子萌发和幼苗生长的影响. 干旱地区农业研究, 2009,27(4):136-139.
Lyu B, Xu Y Z, Wang Z J, Fan Y L, Yu Y J . Effect of polyethylene glycol stress on seedling growth and seed germination of tomato with gibberellin soaking. Agric Res Arid Areas, 2009,27(4):136-139 (in Chinese with English abstract).
[16] 温福平, 张檀, 张朝晖, 潘映红 . 赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析. 作物学报, 2009,35:483-489.
doi: 10.3724/SP.J.1006.2009.00483
Wen F P, Zhang T, Zhang Z H, Pan Y H . Proteome analysis of relieving effect of gibberellin on the inhibition of rice seed germination by salt stress. Acta Agron Sin, 2009,35:483-489 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00483
[17] 于海英, 柴守权, 周玉江, 赵俊 . 倒春寒与杨树烂皮病发病的关系. 浙江农林大学学报, 2011,28:927-930.
doi: 10.3969/j.issn.2095-0756.2011.06.015
Yu H Y, Chai S Q, Zhou Y J, Zhao J . Relationship between Valsa sordida and abnormal coldness in spring. J Zhejiang A&F Univ, 2011,28:927-930 (in Chinese with English abstract).
doi: 10.3969/j.issn.2095-0756.2011.06.015
[18] 李春娟, 闫彩霞, 张廷婷, 马超, 单世华 . 温度对不同花生品种种子活力的影响. 花生学报, 2012,41(1):21-25.
doi: 10.3969/j.issn.1002-4093.2012.01.007
Li C J, Yan C X, Zhang Y T, Ma C, Shan S H . Effect of temperature on vigor of peanut seed and quality components. J Peanut Sci, 2012,41(1):21-25 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-4093.2012.01.007
[19] 黄金堂, 陈海玲, 李清华, 李淑萍, 谢志琼 . 春花生与秋花生种子活力比较研究. 花生学报, 2007,36(3):30-33.
doi: 10.3969/j.issn.1002-4093.2007.03.007
Huang J T, Chen H L, Li Q H, Li S P, Xie Z Q . The comparative study of seed vigor between spring planted and autumn planted peanuts. J Peanut Sci, 2007,36(3):30-33 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-4093.2007.03.007
[20] 李锦树, 王洪春, 王文英, 朱亚芳 . 干旱对玉米叶片细胞透性及膜脂的影响. 植物生理学报, 1983,9(3):9-15.
Li J S, Wang H C, Wang W Y, Zhu Y F . Effect of drought on the permeability and membrane lipid composition from maize leaves. Acta Phytophysiol Sin, 1983,9(3):9-15 (in Chinese with English abstract).
[21] Guo X R, Chang B W, Zu Y G, Tang Z H . The impacts of increased nitrate supply on Catharanthus roseus growth and alkaloid accumulations under ultraviolet-B stress. J Plant Interact, 2014,9:640-646.
[22] 史普想, 王铭伦, 于洪波, 潘德成, 吴占鹏, 王慧新 . 不同成熟度花生种子萌动期低温对苗期生长发育的影响. 作物杂志, 2009, ( 1):78-81.
doi: 10.3969/j.issn.1001-7283.2009.01.022
Shi P X, Wang M L, Yu H B, Pan D C, Wu Z P, Wang H X . Effects of low temperature at germination stage on seedlings of peanuts with different maturation degree. Crops, 2009, ( 1):78-81 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7283.2009.01.022
[23] 王晶珊, 封海胜, 栾文琪 . 低温对花生出苗的影响及耐低温种质的筛选. 中国油料, 1985, ( 3):28-32.
Wang J S, Feng H S, Luan W Q . Effect of low temperature on seed emergence and screening low temperature resistance germplasm. Oil Crop Chin, 1985, ( 3):28-32 (in Chinese).
[24] 巨伟, 杨彩凤, 张树华, 田纪春, 海燕, 杨学举 . 冬小麦低温处理叶片细胞膜透性的QTL定位. 作物学报, 2012,38:1247-1252.
doi: 10.3724/SP.J.1006.2012.01247
Ju W, Yang C F, Zhang S H, Tian J C, Hai Y, Yang X J . Mapping QTL for cell membrane permeability of leaf treated by low temperature in winter wheat. Acta Agron Sin, 2012,38:1247-1252 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01247
[25] 朱政, 蒋家月, 江昌俊, 李雯 . 低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响. 安徽农业大学学报, 2011,38:24-26.
Zhu Z, Jiang J Y, Jiang C J, Li W . Effects of low temperature stress on SOD activity, soluble protein content and soluble sugar content in Camellin sinensis leaves. J Anhui Agric Univ, 2011,38:24-26 (in Chinese with English abstract).
[26] 沙汉景, 胡文成, 贾琰, 王新鹏, 田雪飞, 于美芳, 赵宏伟 . 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响. 作物学报, 2017,43:1677-1688.
doi: 10.3724/SP.J.1006.2017.01677
Sha H J, Hu W C, Jia Y, Wang X P, Tian X F, Yu M F, Zhao H W . Effect of exogenous salicylic acid, proline, and γ-aminobutyric acid on yield of rice under salt stress. Acta Agron Sin, 2017,43:1677-1688 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01677
[27] 宁露云, 包满珠, 张蔚 . 低温胁迫对矮牵牛H株系花青素、游离脯氨酸及可溶性糖含量的影响. 湖北农业科学, 2016,55:1500-1503.
doi: 10.14088/j.cnki.issn0439-8114.2016.06.034
Ning L Y, Bao M Z, Zhang W . Effect of low temperature stress on the contents of anthocyanin, free proline and soluble sugar of Petunia hybrid. Hubei Agric Sci, 2016,55:1500-1503 (in Chinese with English abstract).
doi: 10.14088/j.cnki.issn0439-8114.2016.06.034
[28] 汤章城 . 逆境条件下植物脯氨酸的累积及其可能的意义. 植物生理学通讯, 1984, ( 1):17-23.
Tang Z C . Accumulation of proline in plant under stress and its possible significance. Plant Physiol Commun, 1984, ( 1):17-23 (in Chinese).
[29] 刘娥娥, 宗会, 郭振飞, 黎用朝 . 干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响. 热带亚热带植物学报, 2000,8:235-238.
doi: 10.3969/j.issn.1005-3395.2000.3.009
Liu E E, Zong H, Guo Z F, Li Y C . Effect of drought, salt and chilling stresses on proline accumulation in shoot of rice seedlings. J Trop Subtrop Bot, 2000,8:235-238 (in Chinese with English abstract).
doi: 10.3969/j.issn.1005-3395.2000.3.009
[30] 王若梦, 董宽虎, 李钰莹, 李晨, 杨静芳 . 外源植物激素对NaCl胁迫下苦马豆苗期脯氨酸代谢的影响. 草业学报, 2014,23(2):189-195.
doi: 10.11686/cyxb20140223
Wang R M, Dong K H, Li Y Y, Li C, Yang J F . Effects of applying exogenous plant hormone on praline metabolism of Swainsonia salsula seedlings under NaCl stress. Acta Pratac Sin, 2014,23(2):189-195 (in Chinese with English abstract).
doi: 10.11686/cyxb20140223
[31] Ward J M, Smith A M, Shah P K, Galanti S E, Yi H, Demianski A J, van der Graaff E, Keller B, Neff M M . A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by the misexpression of a homologous gene, SOB2/DRN-LIKE. Plant Cell, 2006,18:29-39.
doi: 10.1105/tpc.105.036707 pmid: 16339853
[32] 申瑞雪, 潜伟平, 刘江华, 刘仁林 . 不同温度下赤霉素处理对乌饭树与短尾越橘种子发芽的影响. 经济林研究, 2012,30(4):13-18.
Shen R X, Qian W P, Liu J H, Liu R L . Effects of GA3 treatments on seed germination in Vaccinium bracteatum and Vaccinium carlesii at different temperatures. Nonwood For Res, 2012,30(4):13-18 (in Chinese with English abstract).
[33] 孟春芬, 严俊, 曾涛, 江施言, 黄天志, 程剑平 . 赤霉素对秋葵种子发芽的影响. 种子, 2012,31(11):100-102.
doi: 10.3969/j.issn.1001-4705.2012.11.030
Meng C F, Yan J, Zeng T, Jiang S Y, Huang T Z, Cheng J P . The effect of gibberellin on germination of Okra seeds. Seed, 2012,31(11):100-102 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-4705.2012.11.030
[34] 叶景学, 孙桂波, 纪海彬 . 温度和赤霉素对圆叶牵牛种子萌发的影响. 北方园艺, 2012, ( 17):88-89.
Ye J X, Sun G B, Ji H B . Effect of temperature and gibberellin on the germination of Pharbitis purpurea (Linn.) Voigt seeds. Nor Hortic, 2012, ( 17):88-89 (in Chinese with English abstract).
[35] 张永芳, 卫秋慧, 王润梅, 张巽 . 外源赤霉素对盐胁迫下谷子种子萌发的影响. 作物杂志, 2012, ( 6):139-141.
Zhang Y F, Wei Q H, Wang R M, Zhang X . Effect of gibberellin on seed germination of millet (Setaria italica) under salt stress. Crops, 2012, ( 6):139-141 (in Chinese).
[36] 代勋, 李忠光, 龚明 . 赤霉素、钙和甜菜碱对小桐子种子萌发及幼苗抗低温和干旱的影响. 植物科学学报, 2012,30:204-212.
doi: 10.3724/SP.J.1142.2012.20204
Dai X, Li Z G, Gong M . Effect of gibberellin, calcium, and betaine on seed germination and resistance of Jatropha curcas L. seedlings to low temperature and drought stress. Plant Sci J, 2012,30:204-212 (in Chinese with English abstract).
doi: 10.3724/SP.J.1142.2012.20204
[37] 刘会宁, 肖锋利 . 赤霉素对早紫葡萄无核及果实品质的效应. 长江大学学报(自然科学版), 2006,3(4):139-141.
doi: 10.3969/j.issn.1673-1409.2006.04.002
Liu H N, Xiao F L . Effect of gibberellin on seedlessness and fruit major quality of ‘Zaozi’ grape. J Yangtze Univ (Nat Sci Edn), 2006,3(4):139-141 (in Chinese).
doi: 10.3969/j.issn.1673-1409.2006.04.002
[38] 杜晓彧, 常海飞, 冯晓东 . 不同浓度赤霉素对金丝小枣叶片生长和果实品质的影响. 延安大学学报(自然科学版), 2014,33(1):50-53.
Du X Y, Chang H F, Feng X D . Effect of leaf growth and fruit quality of Zizyphus jujube cv. Jinsixiaozao at different concentration of GA. J Yan°an Univ >(Nat Sci Edn), 2014,33(1):50-53 (in Chinese with English abstract).
[39] 朱敏, 邓穗生, 麦贤家, 贺军虎, 陈华蕊, 陈业渊 . GA3和CPPU对海南贵妃杧产量和果实品质的影响. 热带作物学报, 2014,35:1784-1790.
doi: 10.3969/j.issn.1000-2561.2014.09.021
Zhu M, Deng S S, Mai X J, He J H, Chen H R, Chen Y Y . Effect of two plant growth regulators on yield and fruit quality of Hainan Guifei mango ( Mangifera indica L.). Chin J Trop Crops, 2014,35:1784-1790 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-2561.2014.09.021
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[9] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[10] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[11] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[12] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[13] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[14] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[15] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!