欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (1): 99-107.doi: 10.3724/SP.J.1006.2022.04275

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

NtPHYB1与光温信号互作调控烟草种子萌发

李振华1,*(), 王显亚1, 刘一灵2, 赵杰宏3   

  1. 1贵州大学农学院, 贵州贵阳 550025
    2贵州大学山地植物资源保护与种质创新教育部重点实验室, 贵州贵阳 550025
    3贵州省烟草科学研究院 / 烟草行业分子遗传重点实验室, 贵州贵阳 550081
  • 收稿日期:2020-12-15 接受日期:2021-04-14 出版日期:2022-01-12 网络出版日期:2021-06-28
  • 通讯作者: 李振华
  • 基金资助:
    国家自然科学基金项目(31860420);国家自然科学基金项目(32060512);贵州省自然科学基金项目(黔科合基础)([2019]1069);贵州省科技计划项目(黔科合平台人才)([2018]5781号);贵州大学高层次人才引进项目(贵大人基合字)资助([2018]37号)

NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L.

LI Zhen-Hua1,*(), WANG Xian-Ya1, LIU Yi-Ling2, ZHAO Jie-Hong3   

  1. 1College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
    2Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou, China
    3CNTC Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang 550081, Guizhou, China
  • Received:2020-12-15 Accepted:2021-04-14 Published:2022-01-12 Published online:2021-06-28
  • Contact: LI Zhen-Hua
  • Supported by:
    National Natural Science Foundation of China(31860420);National Natural Science Foundation of China(32060512);Natural Science Foundation of Guizhou Province (QKHPT)([2019]1069);Science and Technology Plan Project of Guizhou Province (QKHJC)([2018]5781号);High-level Talents Introduction Project of Guizhou University (GDRJHZ)([2018]37号)

摘要:

光照和温度是影响种子萌发的2个重要环境因子, 光敏色素是光和温度的受体, 研究光敏色素协同光温信号调控种子萌发对于指导作物播种具有重要意义。本研究旨在探索NtPHYB1基因型如何响应光温环境变化而调控烟草种子萌发。结果表明, 15种光温条件下萌发率的均值为野生型(wild type, WT)种子显著大于NtPHYB1-RNAi和NtPHYB1-OE种子。在持续光照下, NtPHYB1-OE种子萌发被抑制, 而在黑暗下NtPHYB1-RNAi种子萌发被抑制。在15℃, 3种基因型种子萌发均被抑制, NtPHYB1-OE种子萌发率最低; 在20℃和25℃, 光促进或抑制种子萌发作用不明显, 3种基因型种子萌发率均较高, NtPHYB1-OE和WT种子达到最大萌发率; 在30℃和35℃, 光对于种子维持较高萌发率是必不可少的, NtPHYB1-RNAi种子达到最大萌发率。综上所述, NtPHYB1、光周期和温度三者之间在调控烟草种子萌发时存在交互作用, 通过修饰NtPHYB1基因和改善播种环境均可显著提高烟草种子的萌发率。

关键词: 种子萌发, 光温敏感性, 光敏色素, 光温信号, 自然选择, 季节变化

Abstract:

Temperature and light are two important environmental factors affecting seed germination, and phytochromes are the sensors of light and temperature. It is of great significance to investigate the interaction of phytochromes with light and temperature to regulate seed germination for guiding crop sowing. The aim of this study is to explore how the NtPHYB1 genotype regulates seed germination in response to change in light and temperature environments in tobacco. The average germination frequency of WT seeds was significantly higher than that of NtPHYB1-OE and NtPHYB1-RNAi seeds under 15 environments. The germination of NtPHYB1-OE seeds was inhibited by continuous light exposure, while the germination of NtPHYB1-RNAi seeds was repressed by darkness. At 15℃, the germinations of all three genotypic seeds were inhibited by the low-temperature, and the germination frequency of NtPHYB1-OE seeds was significantly lower than that of WT and NtPHYB1-RNAi seeds; while there was no significant effect in light signal. At 20℃ and 25℃, the temperature signal promoted the ability of seed germination, and the signal of light was dispensable, resulting in the highest germination frequencies for NtPHYB1-OE and WT seeds. At 30℃ and 35℃, the light signal was indispensable to maintain seed germination for all three genotypic seeds, resulting in the highest germination frequency for NtPHYB1-RNAi seeds. To sum up, there were interactions among NtPHYB1, photoperiod, and temperature in the regulation of seed germination in tobacco. The germination frequencies of tobacco seeds could be significantly improved by modifying NtPHYB1 gene or improving the cultivation environment.

Key words: seed germination, photothermal sensitivity, phytochrome, photothermal signal, natural selection, seasonal variation

表1

基因型、光照、温度及其互作对烟草种子萌发的影响"

基因型
Genotype (G)

Light treatment (L)
温度
Temperature
(T, ℃)
均值(L×T×G)
Mean value (L×T×G)
标准偏差
Standard
deviation
样本数
Sample number
NtPHYB1过表达 持续黑暗Dark 15 17.78 qrstu NOP 8.36 9
NtPHYB1-OE 20 72.00 abcdefg ABCDE 9.26 9
25 78.00 abcdef ABC 7.91 9
30 26.78 opqr LMNO 13.14 9
35 2.89 u Q 2.62 9
NtPHYB1 RNA干扰 15 31.83 nopq KLMN 4.92 6
NtPHYB1-RNAi 20 65.67 cdefghi BCDEFG 7.50 6
25 75.00 abcdef ABCD 10.12 6
30 46.00 lmn GHIJKL 8.67 6
35 5.00 tu Q 1.41 6
野生型WT 15 38.00 mno IJKLM 6.93 3
20 85.67 ab AB 2.08 3
25 80.67 abc ABC 8.14 3
30 62.00 fghij CDEFGH 3.46 3
35 5.00 tu Q 2.00 3
NtPHYB1过表达 12 h光照/12 h 黑暗 15 16.22 rstu NOP 10.97 9
NtPHYB1-OE 12 h light/12 h dark 20 48.33 klm FGHIJK 15.36 9
基因型
Genotype (G)

Light treatment (L)
温度
Temperature
(T, ℃)
均值(L×T×G)
Mean value (L×T×G)
标准偏差
Standard
deviation
样本数
Sample number
25 63.33 efghi CDEFGH 10.55 9
30 74.11 abcdef ABCD 6.41 9
35 73.67 abcdef ABCD 10.32 9
NtPHYB1 RNA干扰 15 18.83 qrst MNOP 5.12 6
NtPHYB1-RNAi 20 55.00 hijkl DEFGHI 7.90 6
25 64.17 defghi CDEFGH 11.96 6
30 78.50 abcde ABC 9.67 6
35 79.33 abcde ABC 4.37 6
野生型WT 15 21.67 pqrs MNOP 4.93 3
20 69.33 cdefgh ABCDE 7.51 3
25 75.00 abcdef ABCD 2.65 3
30 79.67 abcd ABC 4.51 3
35 87.33 aA 3.06 3
NtPHYB1过表达 持续光照Light 15 8.67 stu OP 6.02 9
NtPHYB1- OE 20 38.11 mno IJKLM 18.31 9
25 53.11 jkl EFGHIJ 22.13 9
30 57.22 ghijk DEFGHI 10.93 9
35 65.00 cdefghi BCDEFG 17.68 9
NtPHYB1 RNA干扰 15 20.67 pqrs MNOP 8.98 6
NtPHYB1-RNAi 20 44.83 lmn HIJKL 7.88 6
25 68.33 cdefghi ABCDEF 8.07 6
30 70.33 bcdefgh ABCDE 11.33 6
35 66.17 cdefghi BCDEF 9.79 6
野生型WT 15 11.33 stu OP 3.51 3
20 34.00 mnop JKLMN 5.29 3
25 65.00 cdefghi BCDEFG 2.65 3
30 74.00 abcdef ABCDE 3.00 3
35 70.67 bcdefgh ABCDE 6.43 3

表2

基因型、光照和温度处理均值的组内差值比较"

来源
Source
I J 平均差
Mean difference (I-J)
基因型Genotype NtPHYB1过表达NtPHYB1-OE NtPHYB1 RNA干扰NtPHYB1-RNAi -6.30***
野生型WT -10.94***
NtPHYB1 RNA干扰NtPHYB1-RNAi NtPHYB1过表达NtPHYB1-OE 6.30***
野生型WT -4.64*
野生型WT NtPHYB1过表达NtPHYB1-OE 10.94***
NtPHYB1 RNA干扰NtPHYB1-RNAi 4.64*
光Light 持续黑暗Dark 12 h光照/12 h黑暗 12 h light/12 h dark -14.70***
持续光照Light -5.04**
来源
Source
I J 平均差
Mean difference (I-J)
12 h光照/12 h黑暗 12 h light/12 h dark 持续黑暗Dark 14.70***
持续光照Light 9.66***
持续光照Light 持续黑暗Dark 5.04**
12 h光照/12 h黑暗 12 h light/12 h dark -9.66***
温度Temperature 15℃ 20℃ -36.31***
25℃ -48.74***
30℃ -41.00***
35℃ -30.39***
20℃ 15℃ 36.31***
25℃ -12.43***
30℃ -4.69*
35℃ 5.93**
25℃ 15℃ 48.74***
20℃ 12.43***
30℃ 7.74***
35℃ 18.35***
30℃ 15℃ 41.00***
20℃ 4.69*
25℃ -7.74***
35℃ 10.61***
35℃ 15℃ 30.39***
20℃ -5.93**
25℃ -18.35***
30℃ -10.61***

表3

NtPHYB1、光和温度互作调控烟草种子萌发的多因素方差分析"

来源
Source
III 型平方和
III sum of squares
自由度
DF
均方差
MS
F
F-value
显著性水平
Significant
基因型Genotype (G) 4800.759 2 2400.380 22.199*** 0.000
光处理Light (L) 7936.154 2 3968.077 36.697*** 0.000
温度处理Temperature (T) 63,436.466 4 15,859.116 146.666*** 0.000
G×L 975.230 4 243.807 2.255 0.064
G×T 1206.704 8 150.838 1.395 0.200
L×T 61,711.869 8 7713.984 71.339*** 0.000
G×L×T 3070.141 16 191.884 1.775* 0.036

图1

在恒定光周期随着温度变化烟草种子萌发的变化(A)和在恒定温度随着光周期变化烟草种子萌发的变化(B)"

表4

NtPHYB1响应光照和温度信号互作调控种子萌发"

不同基因型种子萌发差异
Germination ratio among different genotype (G)
光和温度的环境组合
Environmental combinations of light and temperature
无显著差异
No significant difference
NtPHYB1-OE, WT and NtPHYB1-RNAi: T15L12, T15L24, T20L24, T25L0, T25L12, T30L12, T35L0, T35L12, and T35L24.
显著差异
Significant difference
WT>NtPHYB1-OE: T15L0, T20L12, T25L24,T30L0, T30L24; WT>NtPHYB1-RNAi: T20L0 and T30L0; NtPHYB1-RNAi>NtPHYB1-OE: T25L24.
极大值
Maximum
NtPHYB1-OE: T20L0, T25L0, T30L12, T35L12; WT: T20L0, T25L0, T25L12, T30L12, T30L24, T35L12; NtPHYB1-RNAi: T30L12, T30L24, T35L12.
极小值
Minimum
NtPHYB1-OE: T15L0, T15L12, T15L24, T35L0; WT: T15L24, T35L0; NtPHYB1-RNAi: T35L0

图2

光敏色素整合光温信号调控种子萌发响应季节变化 粉色模块是指暴露在地表的种子, 灰色模块是指埋在土壤中的种子。在冬季和早春(<15℃), 光敏色素感知低温信号抑制种子萌发, 而光信号的作用微乎其微。在晚春早秋(约20℃), 温度信号独立激活光敏色素促进种子萌发。在夏季和初秋(>30℃), 光是维持光敏色素活性和促进种子萌发所必需的。"

[1] Jung J H, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak A K, Box M S, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke J C, Schafer E, Jaeger K E, Wigge P A. Phytochromes function as thermosensors in Arabidopsis. Science, 2016, 354:886-889.
[2] Legris M, Klose C, Burgie E S, Rojas C C, Neme M, Hiltbrunner A, Wigge P A, Schafer E, Vierstra R D, Casal J J. Phytochrome B integrates light and temperature signals in Arabidopsis. Science, 2016, 354:897-900.
[3] Lee K P, Piskurewicz U, Tureckova V, Carat S, Chappuis R, Strnad M, Fankhauser C, Lopez-Molina L. Spatially and genetically distinct control of seed germination by phytochromes A and B. Gene Dev, 2012, 26:1984-1996.
[4] de Wit M, Galvao V C, Fankhauser C. Light-mediated hormonal regulation of plant growth and development. Annu Rev Plant Biol, 2016, 67:513-537.
[5] Hennig L, Poppe C, Sweere U, Martin A, Schafer E. Negative interference of endogenous phytochrome B with phytochrome A function in Arabidopsis. Plant Physiol, 2001, 125:1036-1044.
[6] Franklin K A, Praekelt U, Stoddart W M, Billingham O E, Halliday K J, Whitelam G C. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol, 2003, 131:1340-1346.
[7] Dechaine J M, Gardner G, Weinig C. Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. Plant Cell Environ, 2009, 32:1297-1309.
[8] Strasser B, Sanchez-Lamas M, Yanovsky M J, Casal J J, Cerdan P D. Arabidopsis thaliana life without phytochromes. Proc Natl Acad Sci USA, 2010, 107:4776-4781.
[9] Heschel M S, Selby J, Butler C, Whitelam G C, Sharrock R A, Donohue K. A new role for phytochromes in temperature- dependent germination. New Phytol, 2007, 174:735-741.
[10] Heschel M S, Butler C M, Barua D, Chiang G C K, Wheeler A, Sharrock R A, Whitelam G C, Donohue K. New roles of phytochromes during seed germination. Int J Plant Sci, 2008, 169:531-540.
[11] Donohue K, Heschel M S, Chiang G C, Butler C M, Barua D. Phytochrome mediates germination responses to multiple seasonal cues. Plant Cell Environ, 2007, 30:202-212.
[12] Donohue K, Heschel M S, Butler C M, Barua D, Sharrock R A, Whitelam G C, Chiang G C. Diversification of phytochrome contributions to germination as a function of seed-maturation environment. New Phytol, 2008, 177:367-379.
[13] Borthwick H A, Hendricks S B, Parker M W, Toole E H, Toole V K. A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA, 1952, 38:662-666.
[14] Takaki M, Heeringa G H, Cone J W, Kendrick R E. Analysis of the effect of light and temperature on the fluence response curves for germination of Rumexobtusifolius. Plant Physiol, 1985, 77:731-734.
[15] Halliday K J, Davis S J. Light-sensing phytochromes feel the heat. Science, 2016, 354:832-833.
[16] Sellaro R, Smith R W, Legris M, Fleck C, Casal J J. Phytochrome B dynamics departs from photoequilibrium in the field. Plant Cell Environ, 2019, 42:606-617.
[17] Arana M V, Tognacca R S, Estravis-Barcala M, Sanchez R A, Botto J F. Physiological and molecular mechanisms underlying the integration of light and temperature cues in Arabidopsis thaliana seeds. Plant Cell Environ, 2017, 40:3113-3121.
[18] 王玉芳, 贺化祥, 张明生, 彭斯文, 徐利, 杨小蕊, 翟欣. 光照、温度和盐胁迫对红花大金元种子萌发的影响. 种子, 2009, 28(12):19-22.
Wang Y F, He H X, Zhang M S, Peng S W, Xu L, Yang X R, Zhai X. Effects of light, temperature and salt stress on seed germination of Hongda (a tobacco variety). Seed, 2009, 28(12):19-22 (in Chinese with English abstract).
[19] 王树会, 黄成江. 低温对烟草种子萌发的影响. 中国种业, 2008, (5):48-49.
Wang S H, Huang C J. Effects of low temperature on seed germination of tobacco. China Seed Ind, 2008, (5):48-49 (in Chinese).
[20] 王树会, 赵高坤, 杨志强, 张红艳. 极端高温对烟草种子萌发的影响. 中国种业, 2009, (9):52-54.
Wang S H, Zhao G K, Yang Z Q, Zhang H Y. Effects of extreme temperature on seed germination of tobacco. China Seed Ind, 2009, (9):52-54 (in Chinese).
[21] 招启柏, 宋平, 王广志, 吕冰, 曹显祖. 光、温、激素对烟草种子萌发与幼苗生长的影响. 中国烟草学报, 2001, 7(4):29-32.
Zhao Q B, Song P, Wang G Z, Lyu B, Cao X Z. Effects of light, temperature and phytohormone on seed germination and seedling growth of Nicotiana tabacum. Acta Tab Sin, 2001, 7(4):29-32 (in Chinese with English abstract).
[22] Zhao J H, Han J, Zhang J, Li Z H, Yu J, Yu S Z, Guo Y S, Fu Y F, Zhang X M. NtPHYB1K326, a homologous gene of Arabidopsis PHYB, positively regulates the content of phenolic compounds in tobacco. Plant Physiol Biochem, 2016, 109:45-53.
[23] Leubner-Metzger G, Frundt C, Vogeli-Lange R, Meins F J. Class Iβ-1,3-Glucanases in the endosperm of tobacco during germination. Plant Physiol, 1995, 109:751-759.
[24] Li Z H, Ren X L, Long M J, Kong D J, Liu Y L. Capsule colour quantification-based evaluation of seed dryness and vigour during natural and artificial drying in Nicotiana tabacum. Seed Sci Technol, 2015, 43:208-217.
[25] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 71:501-523.
[26] Shinomura T, Nagatani A, Chory J, Furuya M. The Induction of seed germination in Arabidopsis thaliana is regulated principally by Phytochrome B and secondarily by phytochrome A. Plant Physiol, 1994, 104:363-371.
[27] Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996, 93:8129-8133.
[28] Hennig L, Stoddart W M, Dieterle M, Whitelam G C, Schafe E. Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol, 2002, 128:194-200.
[29] Appenroth K J, Lenk G, Goldau L, Sharma R. Tomato seed germination: regulation of different response modes by phytochrome B2 and phytochrome A. Plant Cell Environ, 2006, 29:701-709.
[30] 李振华, 徐如宏, 任明见, 李鲁华. 光敏色素感知光温信号调控种子休眠与萌发研究进展. 植物生理学报, 2019, 55:539-546.
Li Z H, Xu R H, Ren M J, Li L H. Advances in phytochrome regulating seed dormancy and germination by sensing light and temperature signals. Plant Physiol J, 2019, 55:539-546 (in Chinese with English abstract).
[31] Alba R, Kelmenson P M, Cordonnier-Pratt M M, Pratt L H. The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Mol Biol Evol, 2000, 17:362-373.
[32] Sharrock R A, Clack T, Goosey L. Differential activities of the Arabidopsis phyB/D/E phytochromes in complementing phyB mutant phenotypes. Plant Mol Biol, 2003, 52:135-142.
[33] Fragoso V, Oh Y, Kim S G, Gase K, Baldwin I T. Functional specialization of Nicotiana attenuate phytochromes in leaf development and flowering time. J Integr Plant Biol, 2017, 59:205-224.
[1] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[2] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[3] 张双双,王立伟,姚楠,郭光艳,夏玉凤,秘彩莉. 水稻OsUBA基因的表达及其在促进种子萌发和开花中的功能[J]. 作物学报, 2019, 45(9): 1327-1337.
[4] 宋松泉,刘军,徐恒恒,张琪,黄荟,伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981.
[5] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[6] 严青青,张巨松,李星星,王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1): 100-110.
[7] 常博文,钟鹏,刘杰,唐中华,高亚冰,于洪久,郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130.
[8] 朱广龙,宋成钰,于林林,陈许兵,智文芳,刘家玮,焦秀荣,周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724.
[9] 田润苗, 张雪海, 汤继华, 白光红, 付志远. 玉米种子萌发相关性状的全基因组关联分析[J]. 作物学报, 2018, 44(05): 672-685.
[10] 杨宗举,闫蕾,宋梅芳,苏亮,孟凡华,李红丹,白建荣,郭林,杨建平. 玉米光敏色素A1与A2在各种光处理下的转录表达特性[J]. 作物学报, 2016, 42(10): 1462-1470.
[11] 原换换,孙广华,闫蕾,郭林,樊小聪,肖阳,孟凡华,宋梅芳,詹克慧,杨青华,杨建平. 玉米ZmPP6C基因的克隆及其响应光质和胁迫处理的表达模式分析[J]. 作物学报, 2016, 42(02): 170-179.
[12] 徐恒恒,黎妮,刘树君,王伟青,王伟平,张红,程红焱,宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(07): 1141-1156.
[13] 王霞,马燕斌,宋梅芳,孟凡华,李秀全,杨丽,吴霞,杨克诚,杨建平. 小麦TaPHYA基因亚家族的克隆及表达分析[J]. 作物学报, 2012, 38(08): 1354-1360.
[14] 朱见明, 严学兵, 史莹华, 王成章. 紫花苜蓿光敏色素B基因片段克隆及RNA干扰表达载体的构建[J]. 作物学报, 2011, 37(02): 374-379.
[15] 李壮,马燕斌,蔡应繁,吴锁伟,肖阳,孟凡华,付风铃,黄玉碧,杨建平. 小麦光敏色素基因TaPhyB3的克隆和表达分析[J]. 作物学报, 2010, 36(05): 779-787.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!