欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 779-787.doi: 10.3724/SP.J.1006.2010.00779

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦光敏色素基因TaPhyB3的克隆和表达分析

李壮1,2,马燕斌1,2,**,蔡应繁3,吴锁伟2,肖阳4,孟凡华2,付风铃1,黄玉碧1*,杨建平2,3,*   

  1. 1四川农业大学玉米研究所,四川雅安625014;2中国农业科学院作物科学研究所,北京100081;3重庆邮电大学生物信息学院,重庆400065;4中国农业科学院研究生院,北京100081
  • 收稿日期:2009-11-26 修回日期:2010-02-08 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 杨建平, E-mail: yangjianping@caas.net.cn, Tel: 010-82105859; 黄玉碧, E-mail: yubihuang@sohu.com, Tel: 0835-2882331
  • 基金资助:

    本研究由转基因生物新品种培育重大专项(2008ZX08009-003, 2008ZX08010-002), 国家高技术研究发展计划(863计划)项目(2008AA10Z121, 2006AA10Z1F2), 重庆市自然科学基金(CSTC2009BA1088), 中央级公益性科研院所基本科研业务费专项(2060302-2), 国家博士后科学基金(20080440462), 教育部归国人员启动费和农业部回国人员择优项目资助。

Cloning and Expression Analysis of TaPhyB3 in Triticum aestivum

LI Zhuang1,2, MA Yan-Bin1,2,**,CAI Ying-Fan3,WU Suo-Wei2,XIAO Yang4,MENG Fan-Hua2,FU Feng-Ling1,HUANG Yu-Bi1,*,YANGJian-Ping2,3,*   

  1. 1 Maize Research Institute, Sichuan Agricultural University, Ya’an 450002, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 College of Bio-information, Chongqing University of Posts and Tele-communication, Chongqing 400065, China; 4 Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2009-11-26 Revised:2010-02-08 Published:2010-05-12 Published online:2010-03-15
  • Contact: YANG Jian-Ping,E-mail:yangjianping@caas.net.cn,Tel:010-82105859;HUANG Yu-Bi,E-mail:yubihuang@sohu.com,Tel: 0835-2882331

摘要:

从小麦品种中国春中克隆了编码光敏色素基因B的脱辅基蛋白,将其定位于4D染色体的长臂上,并命名为TaPhyB3TaPhyB3的开放阅读框为3 501 bp,编码一个具有1 165个氨基酸、128 kD的蛋白质。它与水稻、玉米和拟南芥在氨基酸水平上的一致性分别为93%、90%和73%。对不同光线处理7 d小麦植株表达的分析表明,TaPhyB3在黑暗中表达最低、在白光下的表达水平最高,在远红光、红光、蓝光和白光下的表达水平分别是黑暗中的2.2、7.7、7.4和37.3倍。组织特异性表达分析表明,TaPhyB3在小麦幼苗所有组织中都表达,叶片中的表达水平是根的11.4倍。推测TaPhyB3的表达水平与小麦的光形态建成的程度呈正相关。

关键词: 小麦, 光敏色素B, 基因克隆, 基因表达

Abstract:

As an important regulator in growth, development, and metabolic activities of plant, light is perceived by a variety of photoreceptors that control developmental processes, such as germination, photomorphogenesis, flowering, and senescence. Phytochromes play a pivotal role in plant adaptability to ambient environment. AtPhyB has been found to be involved in the response to red light. At present, PhyB genes have been cloned in various plants, and the expression patterns and functions of the gene family have been studied in Arabidopsis thaliana, rice (Oryza sativa L.), and maize (Zea mays L.), but not in wheat (Triticum aestivum L.). The objectives of this study were to clone the full length of PhyB and study its structure and expression under different lights. The full-length cDNA sequence of PhyB, encoding the apoproteinof phytochrome B, was cloned from wheat cultivar Chinese Spring. This gene is located on chromosome 4D and designated TaPhyB3. This gene possesses four extrons and three introns and the open reading frame TaPhyB3 is 3 501 bases in length, which encodes predicted protein of 1 166 amino acids. The conserved domains of PhyB gene family, i.e., DAF-DOMAIN, PHYTOCHROME REGION, PAS-A DOMAIN, PAS-B DOMAIN, HISTIDINE RELATED DOMAIN 1, and HISTIDINE RELATED DOMAIN 2, were also observed in the predicted protein sequence. The alignment analysis of amino acid sequence showed that TaPhyB3 shared 93% or 90% identity with the PHYBs of rice or maize, respectively, but only 73% with that of Arabidopsis. After treated with continuous darkness, far-red, red, blue, and white lights for 7 d, young seedlings of Chinese Spring were sampled for TaPhyB3 expression analysis using real-time reverse transcription polymerase chain reaction (RT-PCR). TaPhyB3 expression levels in the wheat seedlings under far-red, red, blue, and white lights were 2.2, 7.7, 7.4, and 37.3 times as high as that in seedlings under darkness. When exposed to white light for 90 d, the TaPhyB3 expression was detected in root, stem, leaf, and spike. However, the gene was mainly expressed in above-ground organs of wheat seedling, and TaPhyB3 expression level in leaf was 11.4 times as high as that in root. The expression level of TaPhyB3 is speculated to positively correlate with the degree of the seedling photomorphogenesis.

Key words: Triticum aestivum, Phytochrome B, Gene cloning, Gene expression

[1] Kendrick R E, Kronenberg G H M. Photomorphogenesis in plants. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1994

[2] Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date: Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol, 2001, 125: 85–88

[3] Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 2006, 57: 837–858

[4] Briggs W R, Christie J M. Phototropins 1 and 2: Versatile plant blue-light receptors. Trends Plant Sci, 2002, 7: 204–210

[5] Lin C, Todo T. The cryptochromes. Genome Biol, 2005, 6: 220

[6] Ballaré C L. Stress under the sun: Spotlight on ultraviolet-B response. Plant Physiol, 2003, 132: 1725–1727

[7] Sage LC. Pigment of the Imagination: A history of Phytochrome Research. San Diego, CA, USA: Academic Press, 1992. p 562

[8] Sharrock R A, Quail P H. Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev, 1989, 3: 1745–1757

[9] Somers D E, Quail P H. Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis. Plant J, 1995, 7: 413–427

[10] Canton F R, Quail P H. Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis. Plant Physiol, 1999, 121: 1207–1215

[11] Clough R C, Jordan-Beebe E T, Lohman K N, Marita J M, Walker J M, Gatz C, Vierstra R D. Sequences within the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation. Plant J, 1999 17: 155–167

[12] Hennig L, Büche C, Eichenberg K, Schäfer E. Dynamic properties of endogenous phytochrome A in Arabidopsis seedlings. Plant Physiol, 1999, 121: 571–577

[13] Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes-the sequences and expression of PHYD and PHYE. Plant Mol Biol, 1994, 25: 413–427

[14] Hirschfeld M, Tepperman J M, Clack T, Quail P H, Sharrock R A. Coordination of phytochrome levels in PhyB mutants of Arabidopsis as revealed by apoproteinspecific monoclonal antibodies. Genetics, 1998, 149: 523–535

[15] Abdul-Kader J, Konjevic R, Whitelam G, Gordon W, Poff L K. Both phytochrome A and phytochrome B are required for the normal expression of phototropism in Arabidopsis thaliana seedlings. Physiol Plant, 1997, 101: 278–282

[16] Whitelam G C, Devlin P F. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ, 1997, 20: 752–758

[17] Folta K M, Spalding E P. Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition. Plant J, 2001, 28: 333–340

[18] Tepperman J M, Hudson M E, Khanna R, Zhu T, Chang S H, Wang X, Quail P H. Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling deetiolation. Plant J, 2004, 38: 725–739

[19] Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005, 17: 3311–3325

[20] Sheehan M J, Farmer P R, Brutnell T P. Structure and expression of maize phytochrome family homeologs. Genetics, 2004, 167: 1395–1405

[21] Kern R, Gasch A, Deak M, Kay S A, Chua N H. PhyB of tobacco, a new member of the phytochrome family. Plant Physiol, 1993, 102: 1363–1364

[22] Childs K L, Miller F R, Cordonnier-Pratt M M, Pratt L H, Morgan P W, Mullet J E. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol, 1997, 113: 611–619

[23] Tuskan G A, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596–1604

[24] Sz?cs P, Karsai I, von Zitzewitz J, Mészárps K, Cooper L L D, Gu Y Q, Chen T H H, Hayes P M, Skinner J S. Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor Appl Genet, 2006, 112: 1277–1285

[25] Janda J, Bartoš J, Šafá? J, Kubaláková M, Valárik M, ?íhalíková J, Šimková H, Caboche M, Sourdille P, Bernard M, Chalhoub B, Dole?el J. Construction of a subgenomic BAC library specific for chromosomes 1D, 4D, and 6D of hexaploid wheat. Theor Appl Genet, 2004, 109: 1337–1345

[26] Sheehan M J, Kennedy L M, Costich D E, Brutnell T P. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J, 2007, 49: 338–353

[27] Boccalandro H E, Rugnone M L, Moreno J E, Ploschuk E L, Serna L, Yanovsky M J, Casal J J. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol, 2009, 150: 1083–1092
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[6] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[7] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[14] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[15] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!