欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 771-778.doi: 10.3724/SP.J.1006.2010.00771

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于QTL定位分析小麦株高的杂种优势

李卓坤1,谢全刚1,朱占玲1,刘金良2,韩淑晓1,田宾1,袁倩倩1,田纪春1,*   

  1. 1山东农业大学/国家作物生物学重点实验室小麦品质育种室,山东泰安271018;2肥城市汶阳镇农业技术推广站,山东肥城271600
  • 收稿日期:2009-11-04 修回日期:2010-01-06 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 田纪春,E-mail:jctian@sdau.edu.cn,Tel:0538-8242040
  • 基金资助:

    本研究由国家重点基础研究计划(973计划)项目(2009CB118301),国家自然科学基金项目(30971764)和农业部行业科研基金项目(nyhyzx07-002)资助.

Analysis of Plant Height Heterosis Based on QTL Mapping in Wheat

LI Zhuo-Kun1,XIE Quan-Gang1,ZHU Zhan-Ling1,LIU Jin-Liang2,HAN Shu-Xiao1,TIAN Bin1,YUAN Qian-Qian1,TIAN Ji-Chun1*   

  1. 1Croup of Quality Wheat Breeding of Key Laboratory of Crop Biology,Shandong Agricultural University,Tai'an 271018,China;2Agro-technique Extension station,Wenyang Town,Feicheng 271600,China
  • Received:2009-11-04 Revised:2010-01-06 Published:2010-05-12 Published online:2010-03-15
  • Contact: TIAN Ji-Chun,E-mail:jctian@sdau.edu.cn,Tel:0538-8242040

摘要:

为探讨小麦株高杂种优势的分子遗传基础,以小麦品种花培3号和豫麦57杂交F1经染色体加倍获得的DH群体168个株系为材料,构建了一套含168个杂交组合的永久F2群体。利用复合区间作图法,在3个环境中进行了基于QTL定位的株高杂种优势分析,共检测到3个加性效应位点、2个显性效应位点、4对上位效应位点(包括加性×加性、加性×显性、显性×加性显性×显性)20个杂种优势位点。位于2D4D5B2染色体上Qph2DQph4DQPh5B23个环境中同时被检验到,受环境影响小表达稳定。在2D染色体上相近的区域定位出多个杂种优势位点, 其中Qph2D-2Qph2D-7可解释杂种优势表型变异的29.77%55.77%7D染色体的Xwmc273.2–Xcfd175之间定位出同一个杂种优势位点Qph7D-2。结果表明,在2D4D7D染色体上这些区域存在一些对小麦株高的杂种优势起重要作用的位点。

关键词: 小麦, “永久F2”群体, 株高, QTL, 杂种优势位点

Abstract:

Plant height (PH) is an important indicator for plant type, population size, biomass, and resistance to lodging. Besides, it is also associated with grain yield in cereal crops. Thus, it is a constant focus in genetics and heterosis of wheat (Triticum aestivum L.). This study aimed at studying the molecular genetic basis of plant height heterosis in wheat. From a set of doubled haploid (DH) lines derived from Huapei 3 × Yumai 57, an “immortalized F2” population was constructed with 168 single crosses. The DH lines, IF2 population, and the parents were evaluated for plant height in three environments, i.e., in Tai’an, Shandong Province, in 2007 and 2008 cropping seasons and in Jiyuan, Henan Province, in 2008 cropping season. Based on the genetic map of quantitative trait locus (QTL) constructed in our previous study, we analyzed the heterosis of PH of wheat using the composite interval mapping method. A total of three additive QTLs, two dominance QTLs, four pairs of epistatic QTLs (including additive × additive, additive × dominance, dominance × additive, dominance × dominance), and 20 heterotic loci were detected for PH in the three environments. Two QTLs, Qph2D and Qph4D, were detected on chromosomes 2D and 4D with minor interaction of additive by environment. In addition, several other heterotic loci for PH were also identified on chromosome 2D at very close regions with similar marker intervals. Of them, QTLs Qph2D-2 and Qph2D-7 explained the variance of PH by 29.77% and 55.77%, respectively. Another QTL associated with PH heterosis, Qph7D-2, was mapped in the marker interval between Xwmc273.2 and Xcfd175 on chromosome 7D in the three environments. The results indicated that a few QTLs on chromosomes 2D, 4D, and 7D play an important role in PH heterosis in wheat. These loci have potential use for the improvement of PH in wheat breeding assisted with molecular markers.

Key words: Wheat, Immortalized F2 population, Plant height, Quantitative trait locus, Heterotic loci

[1]Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science, 1910, 32: 627-628
[2]Jones D F. Dominance of linked factors as a means of accounting for heterosis. Genetics, 1917, 2: 466-479
[3]Shull G H. The composition of a field of maize. J Hered, 1908, 4: 296-301
[4]East E M. Heterosis. Genetics, 1936, 21: 375-397
[5]Stuber C W. Heterosis and hybrid rice breeding. Plant Breed, 1994, 12: 227-251
[6]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839
[7]Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of the heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140: 745-754
[8]Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li H X, Zhang Q F, Saghai-Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid
[J].Proc Natl Acad Sci USA
[9]Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTL affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross population
[J].Theor Appl Genet
[10]Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato
[J].Proc Natl Acad Sci USA
[11]Luo X J, Fu Y C, Zhang P J, Wu S, Tian F, Liu J Y, Zhu Z F, Yang J S, Sun C Q. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice
[J]. J Integr Plant Biol
[12]Zhao Y-H(赵彦宏), Zhu J(朱军), Xu H-M(徐海明), Yang J(杨剑), Gao Y-M(高用明), Song Y-S(宋佑胜), Shi C-H(石春海), Xing Y-Z(邢永忠). Predicting heterosis of effective panicle number per plant based on QTL mapping in rice. Chin J Rice Sci (中国水稻科学), 2007, 21(4): 350-354 (in Chinese with English abstract)
[13]Li W, Gill B S. Genomics for cereal improvement. In: Gupta P K, Varshney R K, eds. Cereal Genomics. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2004. pp 585-634
[14]Yang S-J(杨松杰), Zhang X-K(张晓科), He Z-H(何中虎), Xia X-C(夏先春), Zhou Y(周阳). Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker.Sci Agric Sin (中国农业科学), 2006, 39(8): 1680-1688 (in Chinese with English abstract)
[15]Korzun V, Röder M S, Ganal M W, Worland A J, Law C N. Genetic analysis of the dwarfing gene (Rht8) in wheat: Part I. molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104-1109
[16]Cadalen T, Sourdille P, Charmet G, Tixier M H, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M. Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population
[J].Theor Appl Genet
[17]Araki E, Miura H, Sawada S. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat
[J]. Theor Appl Genet
[18]Shah M M, Gill K S, Baeniziger P S, Yen Y, Kaeppler S M, Ariyarathne H M. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat
[J]. Crop Sci
[19]Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L
[J].). Theor Appl Genet
[20]Liu D C, Gao M Q, Guan R X, Li R Z, Cao S H, Guo X L, Zhang A M. Mapping quantitative trait loci for plant height in wheat (Triticum aestivum L.) using a F2:3 population. Acta Genet Sin, 2002, 29: 706-711
[21]Huang X Q, Cöster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379-1389
[22]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L
[J].). Theor Appl Genet
[23]Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat
[J]. J Genet Genomics
[24]Li Y C, Peng J H, Liu Z Q. Heterosis and combining ability for plant height and its components in hybrid wheat with Triticum timopheevi cytoplasm
[J].Euphytica
[25]Tang J-H(汤继华), Ma X-Q(马西青), Teng W-T(滕文涛), Yan J-B(严建兵), Wu W-R(吴为人), Dai J-R(戴景瑞), Li J-S(李建生). Detection of heterotic locus and quantitative trait loci for plant height using an immortalized F2 population in maize. Chin Sci Bull (科学通报), 2006, 51(24): 2864-2869 (in Chinese)
[26]
[26]
[27]Hai Y(海燕), Kang M-H(康明辉). Breeding of a new wheat variety Huapei 3 with high yield and early maturing. J Henan Agric Sci (河南农业科学), 2007, (5): 36-37 (in Chinese with English abstract)
[28]Guo C-Q(郭春强), Bai Z-A(柏志安), Liao P-A(廖平安), Jin W-K(靳文奎). Yumai 57, a novel wheat variety with high yield and good quality. China Seed (中国种业), 2004, (4): 54 (in Chinese)
[29]Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid
[J].Proc Natl Acad Sci UAS
[30]Zhang K P, Tian J C, Zhao L, Liu B, Chen G F. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars
[J].Genetica
[31]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches
[J].Theor Appl Genet
[32]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects
[J].Theor Appl Genet
[33]McIntosh R A, Devos K M, Dubcovsky J, Rogers W J, Morris C F, Appels R, Anderson O D. Catalogue of gene symbols for wheat. 2005
[2009-09-30]. http://wheat.pw.usda.gov/ggpages/wgc/2005upd.html
[34]Zhou M-P(周淼平), Huang Y-H(黄益洪), Ren L-J(任丽娟), Wang S-W(王书文), Ma H-X(马鸿翔), Lu W-Z(陆维忠). Detection of QTLs for plant height in wheat using RILs. Jiangsu J Agric Sci (江苏农业学报), 2004, 20(4): 201-206 (in Chinese with English abstract)
[35]Sourdille P, Cadalen T, Guyomarch H, Snape J W, Perretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 2003, 106: 530-538
[36]Wang Z-L(王竹林), Wang H(王辉), Sun D-J(孙道杰), He Z-H(何中虎), Xia X-C(夏先春), Liu S-D(刘曙东). QTL mapping for plant height of wheat using an F2:3 population
[J].J Northwest A&F Univ (西北农林科技大学学报.2008, 36(12):60-
[37]Liu G(刘刚). Analysis of QTL and Genetic Basis of Heterosis of Plant Height in Wheat.MS Dissertation of Xinjiang Agricultural University (新疆农业大学). 2007 (in Chinese with English abstract)
[38]Worland A J, Korzun V, Roder M S, Ganal M W, Law C N. Genetic analysis of the dwarfing gene Rht8 in wheat: II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet, 1998, 96: 1110-1120
[39]Zhang X K, Yang S J, Zhou Y, He Z H, Xia X C. Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers
[J].Euphytica
[40]Ellis M H, Bonnett D G, Rebetzke G J. A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007, 157: 209-214
[41]Zhang Y, Ni Z F, Yao Y Y, Nie X L, Sun Q X. Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.).BMC Genetics, 2007, 8: 40
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!