欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 764-770.doi: 10.3724/SP.J.1006.2010.00764

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

实践八号卫星飞行环境中不同因素对小麦的诱变效应

郭会君,靳文奎,赵林姝,赵世荣,赵洪兵,刘录祥*   

  1. 中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程,北京100081
  • 收稿日期:2009-11-26 修回日期:2010-01-13 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 刘录祥, E-mail: luxiang@263.net.cn; Tel: 010-62122719
  • 基金资助:

    本研究由国家航天育种工程(发改高技[2003]138号),国家高技术研究发展计划(863计划)项目(2007AA100102),国家科技支撑计划(2008BAD97B01,2009BAA24B05),农业部农业公益性行业科研专项(200803034)和国际原子能机构项目(CRP14195,CPR5017)资助。

Mutagenic Effects of Different Factors in Spaceflight Environment of Shijian-8 Satellite in Wheat

GUO Hui-Jun,JIN Wen-Kui,ZHAO Lin-Shu,ZHAO Shi-Rong,ZHAO Hong-Bing,LIU Lu-Xiang*   

  1. Institute of Crop sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement,Beijing 100081,China
  • Received:2009-11-26 Revised:2010-01-13 Published:2010-05-12 Published online:2010-03-15
  • Contact: LIU Lu-Xiang, E-mail: luxiang@263.net.cn; Tel: 010-62122719

摘要:

以实践八号育种卫星1×g离心机、铅屏蔽室和卫星舱内同时搭载处理的3个小麦品种为材料,分别分析同一飞行环境下空间辐射、空间微重力和空间综合环境作用对小麦的损伤特点,比较研究其对小麦品种的诱变效应。结果表明,空间综合因素处理抑制了小麦轮选987和新麦18当代(SP1代)的苗期生长,而对周麦18没有显著影响,空间辐射单因素处理只对轮选987有显著的抑制作用,而空间微重力对3品种的抑制作用都不显著;成熟后3种处理对各农艺性状的影响都不存在显著差异。3个小麦品种SP2代均出现株高、穗长、千粒重等多种表型性状突变;轮选987和新麦18都表现空间综合环境因素诱发的突变频率高于其他2个单一因素,而空间微重力的突变效应最小。在新麦18空间综合因素处理的群体中,还发现了叶片条纹状白化突变体(0.48%)并可以遗传到后代。上述结果证实,在空间条件下宇宙射线和微重力的共同作用具有累加的效应,宇宙射线是产生变异的主要因素,空间微重力的单独作用也可以导致变异的产生。

关键词: 小麦, 空间飞行, 宇宙射线, 微重力, 生物损伤, 诱变效应

Abstract:

Space environment mainly consisted of cosmic rays and microgravity is a kind of complicated mutagen, and has been used for plant mutation induction and breeding. In the recoverable satellite Shijian-8 that was launched for breeding purpose on September 9, 2006, seeds of three wheat (Triticum aestivum L.) cultivars, Lunxuan 987, Xinmai 18, and Zhoumai 18, were loaded. In the 1×g centrifuge, 300 seeds of each variety were treated with space cosmic rays (CR-E), and in the lead screen container and the satellite capsule, 500 seeds of each cultivar were treated with microgravity (Mg-E) and comprehensive factors of space environment (SPc-E), respectively. The treated seeds were germinated at room temperature and transplanted in the field after vernalization, the inhibition effects of the three treatments were evaluated and the mutagenic effects on wheat were compared. In the SPc-E treatment, growth of seedlings was significantly inhabited in the first generation (SP1) of Lunxuan 987 and Xinmai 18, whereas no significant effect was observed in the seedling growth of Zhoumai 18. In the CR-E treatment, only the growth of Lunxuan 987 seedlings was significantly inhibited. The Mg-E treatment had no significant effect on seedling growth in all the three cultivars. No significant variations were detected in main agronomic traits in the SP1 generation. In the SP2 generation, there were obvious mutations in phenotypes of the three cultivars, such as plant height, spike length and thousand-grain weight. In Lunxuan 987 and Xinmai 18, the highest mutation frequency was observed in the SPc-E treatment, followed by the CR-E treatment, and the lowest mutation frequency in the Mg-E treatment. A novel inheritable mutant of striated-albino leaf, with the frequency of 0.48%, appeared in the SP2 population of Xinmai 18 under the SPc-E condition. Among the three treatments, comprehensive factors of space environment induced the most frequent mutations of wheat, indicating the synergistic effect between cosmic rays and microgravity, while the single effect of microgravity was much lower than that of cosmic rays.

Key words: Wheat, Spaceflight, Cosmic rays, Microgravity, Biological damage, Mutagenic effect

[1]Liu L-X(刘录祥), Guo H-J(郭会君), Zhao L-S(赵林姝), Gu J-Y(古佳玉), Zhao S-R(赵世荣). Achievements in the past twenty years and perspective outlook of crop space breeding in China. J Nucl Agric Sci核农学报), 2007, 21(6): 589-592 (in Chinese with English abstract) (
[2]Wang Y(王雁), Li L-B(李潞滨), Han L(韩蕾). Space mutation technique and its application in China’s ornamental plant breeding. For Res (林业科学研究), 2002, 15(2): 229-234 (in Chinese with English abstract)
[3]Xu R(徐荣), Liu Y-G(刘友刚), Sun S-Q(孙素琴), Yu J(于晶), Xu J(徐江), Zhou F(周峰), Chen J(陈君). Biological effects of space flight on SP1 traits of Fenugreek. J Nucl Agric Sci核农学报), 2009, 23(2): 262-265 (in Chinese with English abstract) (
[4]Wei L-J(魏力军), Wang J-M(王俊敏), Yang Q(杨谦), Luo R-T(骆荣挺), Zhang M-X(张铭铣), Bao G-L(鲍根良), Xu J-L(徐建龙), Sun Y-Q(孙野青). A comparative study on mutagenic effects of space flight and γ-rays irradiation in rice. Sci Agric Sin (中国农业科学), 2006, 39(7): 1306-1312 (in Chinese with English abstract)
[5]Wang J-M(王俊敏), Xu J-L(徐建龙), Wei L-J(魏力军), Sun Y-Q(孙野青), Luo R-T(骆荣挺), Zhang M-X(张铭铣), Bao G-L(鲍根良). Mutagenic differences of space environment and ground γ-irradiation in rice. Acta Agron Sin (作物学报), 2006, 32(7): 1006-1010 (in Chinese with English abstract)
[6]Li J-G(李金国), Liu M(刘敏), Wang P-S(王培生), Zhang J(张键), Xue H(薛淮), Guo Y-H(郭亚华). Effects of space conditions on mutation and inheritance of tomato
[J].Space Med & Med Eng (航天医学与医学工程.2000, 13(2):114-118
[7]Fang J-L(方金梁), Zeng G-J(曾国基), Li J-R(李九如). Breeding of super high yield rice variety with high protein content. Chin J Space Sci (空间科学学报), 1996, 16(suppl): 157 (in Chinese)
[8]Song F-J(宋福金), Gao C-Q(高存启), Liu B-H(刘宝海), Zhang G-B(张广彬), Nie S-J(聂守军), Yu L-B(于良斌). Mutation breeding of rice in space environments. In: Proceedings of the Annual Symposium of the Chinese Society of Crop Sciences (中国作物学会学术年会论文集), 2003. pp 143-146 (in Chinese)
[9]Yi J-C(易继财), Zhuang C-X(庄楚雄), Yao J(姚涓), Wang H(王慧), Chen Z-Q(陈志强), Mei M-T(梅曼彤). DNA polymorphic analysis of rice mutation induced by space flight with molecular markers. Acta Biophys Sin (生物物理学报), 2002, 18(4): 478-483 (in Chinese with English abstract)
[10]Halstead T W, Dutcher F R. Plants in space
[J].Annu Rev Plant Physiol
[11]Wang B(王斌), Li J-G(李金国), Qiu F(邱芳). Breeding by space mutagenesis in mungbean and its molecular analysis. Chin J Space Sci (空间科学学报), 1996, 16(suppl): 121-124 (in Chinese with English abstract)
[12]Luo Y(骆艺), Wang X-J(王旭杰), Mei M-T(梅曼彤), Zhuang C-X(庄楚雄), Zhou F(周峰), Wei Z-Q(卫增泉), Xie H-M(颉红梅), Yao J(姚涓), Zhao J-L(赵均良). Genomic polymorphism in consecutive generation rice plants from seeds on board spaceship and their relationship with space HZE particles. Acta Biophys Sin (生物物理学报), 2006, 22(2): 131-138 (in Chinese with English abstract)
[13]Guo H-J(郭会君), Liu L-X(刘录祥), Han W-B(韩微波), Zhao S-R(赵世荣), Li J-C(李家才), Zhao L-S(赵林姝), Wang J(王晶). Mutagenic effects of mixed particle field irradiation in wheat. Sci Agric Sin (中国农业科学), 2008, 41(3): 654-660 (in Chinese with English abstract)
[14]Abe T, Matsuyama T, Sekido S, Yamaguchi I, Yoshida S, Kameya T. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation
[J].J Radiat Res
[15]Guo H J, Liu L X, Han W B, Zhao S R, Zhao L S, Sui L, Zhao K, Kong F Q, Wang J. Biological effects of high energy 7Li ion beams implantation on wheat. Plant Mutation Rep, 2007, 1: 31-35
[16]Williams N D, Joppa L, Duysen M E, Freeman T P. Inheritance of three chlorophyll-deficient mutants of common wheat
[J].Crop Sci
[17]Luo P G, Ren Z L. Wheat leaf chlorosis controlled by a single recessive gene. J Plant Physiol Mol Biol, 2006, 32: 330-338
[18]Cao L(曹莉), Wang H(王辉), Sun D-J(孙道杰), Feng Y(冯毅), Li X-J(李学军), Min D-H(闵东红). Genetic analysis of a novel aurea mutant in wheat. Hereditas (遗传), 2008, 30(12): 1603-1607 (in Chinese with English abstract)
[19]Wei L J, Yang Q, Xia H M, Furusawa Y, Guan S H, Xin P, Sun Y Q. Analysis of cytogenetic damage in rice seeds induced by energetic heavy ions on-ground and after spaceflight. J Radiat, 2006, 47: 273-278
[20]Hahn A, Hock B. Chromosome mechanics of fungi under spaceflight conditions-tetrad analysis of two-factor crosses between spore color mutants of Sordaria macrospore. FASEB J, 1999, 13: S149-S156
[21]Yang C-X(杨垂绪), Mei M-T(梅曼彤). Space Radiobiology (太空放射生物学). Guangzhou: Sun Yat-Sen University Press, 1995 (in Chinese)
[22]Wang L-Q(王琳清). Mutation Breeding in Wheat (小麦诱变育种学). Beijing: China Agricultural Science and Technology Press, 2004. pp 148-150 (in Chinese)
[23]Xin Q-G(辛庆国), Liu L-X(刘录祥), Guo H-J(郭会君), Zhao L-S(赵林姝), Yu Y-J(于元杰), Zhao K(赵葵), Sui L(隋丽), Kong F-Q(孔福全), Zhao S-R(赵世荣). SSR analysis of M1 variation of dry seeds implanted by 7Li ion beam in wheat. J Triticeae Crops (麦类作物学报), 2007, 27(4): 560-564 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!