欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (1): 108-120.doi: 10.3724/SP.J.1006.2022.04276

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析

谢琴琴(), 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉*()   

  1. 西南大学农学与生物科技学院, 重庆 400716
  • 收稿日期:2020-12-16 接受日期:2021-04-14 出版日期:2022-01-12 网络出版日期:2021-06-09
  • 通讯作者: 朱利泉
  • 作者简介:E-mail: xieqq1995@163.com第一联系人:**同等贡献
  • 基金资助:
    国家自然科学基金项目(31572127);中央高校基本科研业务费专项资金资助(XDJK2020D024)

Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea

XIE Qin-Qin(), ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan*()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2020-12-16 Accepted:2021-04-14 Published:2022-01-12 Published online:2021-06-09
  • Contact: ZHU Li-Quan
  • About author:First author contact:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31572127);Fundamental Research Funds for the Central Universities(XDJK2020D024)

摘要:

自交不亲和性(self-incompatibility, SI)是指植株的雌蕊对自身花粉和异体花粉进行识别从而抑制自身花粉萌发的特性, PUB (Plant U-Box)蛋白在植物抗逆及信号转导过程中起着重要的作用。本研究通过分析甘蓝自花授粉0~60 min的柱头转录组数据, 筛选到1个受自花授粉诱导上调表达的PUB蛋白编码基因BoPUB9BoPUB9 cDNA序列长度为1368 bp, gDNA序列全长1720 bp, 含有1个臂重复结构域和1个U-box结构域。荧光定量PCR结果显示, BoPUB9基因在甘蓝的不同组织中均有表达, 在萼片中的表达量最高, 花瓣、雄蕊、柱头表达量次之, 在花粉花蕾中表达量相对较低, 同GUS染色结果保持一致。BoPUB9基因在自花授粉0~30 min内快速上调表达, 15 min后为异花授粉后表达量的20多倍, 在30 min后达到差异最大, 自花授粉后的表达量为异花授粉的40多倍。亚细胞定位结果显示, BoPUB9蛋白在细胞核和细胞质中均有表达, 且BoPUB9蛋白在大肠杆菌中被成功诱导表达, 相对分子质量为51 kD, 与预测结果一致。酵母双杂交与poll-down结果显示, SRK胞内域与PUB9蛋白存在相互作用。推测BoPUB9可能是一种参与甘蓝自交不亲和反应过程的新基因, 这为甘蓝自交不亲和的进一步研究和利用提供了新内容。

关键词: 甘蓝, 基因克隆, 自交不亲和, 表达分析, 酵母双杂交

Abstract:

Self-incompatibility (SI) refers to the characteristic that the pistil of a plant can recognize its own pollen and allogeneic pollen so as to inhibit the germination of its own pollen. PUB (Plant U-Box) proteins play an important role in plant stress resistance and signal transduction. In this study, through the analysis of stigma transcriptome data of Brassica oleracea self-pollination at 0-60 minute(s), a PUB protein coding gene BoPUB9 was screened and up-regulated by self-pollination. The BoPUB9 cDNA sequence was 1368 bp, gDNA of 1720 bp in length, containing one arm repeat domain and one U-box domain. The relative expression levels showed that BoPUB9 gene was expressed in different tissues of Brassica oleracea, and the relative expression level was the highest in sepals, followed by petals, stamens and stigmas, and relatively lower in pollen buds, which was consistent with the results of GUS staining. The relative expression level of BoPUB9 gene was up-regulated rapidly in self-pollination 0-30 minute(s), the expression level after 15 min was more than 20 times that after cross-pollination, and the difference was the biggest after 30 min, the expression level after self-pollination was more than 40 times that after cross-pollination. Subcellular localization revealed that BoPUB9 protein was expressed in both nucleus and cytoplasm, and BoPUB9 protein was successfully induced in E. coli, and the relative molecular weight of 51 kD was consistent with the predicted results. The results of yeast two-hybrid and poll-down indicated that the intracellular domain of SRK interacted with PUB9 protein. It was speculated that BoPUB9 might be a novel gene involved in the process of self-incompatibility in Brassica oleracea, which providing a new content for further research and utilization of self-incompatibility in Brassica oleracea.

Key words: Brassica oleracea, gene cloning, self-incompatibility, the relative expression level, yeast two-hybrid

表1

本试验所用引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Functions
BoPUB9-AD F: GTACCAGATTACGCTCATATGATGGCAAAGACCGGATTTTTC 酵母双杂交引物
R: ATGCCCACCCGGGTGGAATTCGGCTGTGTGAGTAAGATTCATA Yeast two-hybrid primers
SRKj-BK F: GTACCAGATTACGCTCATATGTCAGATCGTGAGGTTTTCAATTC 酵母双杂交引物
R: ATGCCCACCCGGGTGGAATTCGCCTTGTTATCGTTCCATGACTA Yeast two-hybrid primers
BoPUB9-PAN F: AAGTCCGGAGCTAGCTCTAGAATGGCAAAGACCGGATTTTTC 基因亚细胞定位
R: GCCCTTGCTCACCATGGATCCGGCTGTGTGAGTAAGATTCATA Subcellular location
BoPUB9-PGEX F: GATCTGGTTCCGCGTGGATCCATGGCAAAGACCGGATTTTTC 基因的原核表达
R: GATGCGGCCGCTCGAGTCGACGGCTGTGTGAGTAAGATTCATA Prokaryotic expression
BoPUB9-GUS F: CAAGCTTGGCTGCAGGTCGACGTCTTCTTAACGACATGGCTTG 基因的启动子活性分析
R: GGTGGACTCCTCTTAGAATTCCTCCGTCGGATCCACCG Promoter activity analysis
dActin F: GGCTGATGGTGAAGATATTCA 内参引物
R: CAAGCACAATACCAGTAGTAC Internal reference primers
qRT-PCR F: TGGCTTCTGGTCAGACATACGA 荧光定量PCR引物
R: GTGACAGCTTTCTTGGACTCG qRT-PCR primers

表2

生物信息学分析所需软件及在线网站"

软件或在线网站
Software and online websites
功能
Functions
Bio-soft (http://www.bio-soft.net/sms/index.html)和DNAMAN 8.0 软件 推导基因编码的氨基酸序列
Bio-soft (http://www.bio-soft.net/sms/index.html) and DNAMAN 8.0 software Derive the amino acid sequence encoded by the gene
ExPASy-ProtParam tool (http://www.expasy.org/) 分析蛋白质理化性质
Analysis of physical and chemical properties of protein
Signalp (http://www.cbs.dtu.dk/services/SignalP/) 预测蛋白质的信号肽
Signal peptides for predicting proteins
TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0/) 预测蛋白质的跨膜结构域
Prediction of transmembrane domains of proteins
Netphos (http://www.cbs.dtu.dk/services/NetPhos/) 预测磷酸化位点
Predicted phosphorylation site
NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/) 预测N-糖基化位点
Prediction of N-glycosylation sites
ProtScale (https://web.expasy.org/protscale/) 预测疏水性/亲水性
Prediction of hydrophobicity/hydrophilicity
SMART(http://smart.embl-heidelberg.de/) 蛋白质的高级结构域
Advanced domain of protein
PROSITE (http://prosite.expasy.org/) 蛋白质的功能位点
Functional sites of proteins
PlantCARE (http://bioinformatics.psb.ugentbe/webtools/plantcare/) 分析启动子的顺式作用元件
Analysis of cis-acting elements of promoter
MEGA7软件和NCBI (http://www.ncbi.nlm.nih.gov/) 构建进化树
MEGA7 software and NCBI (http://www.ncbi.nlm.nih.gov/) Construct an evolutionary tree
BRAD (http://brassicadb.org/brad/index.php) 分析基因启动子序列
Analysis of gene promoter sequence

图1

转录组数据分析BoPUB9自花授粉和异花授粉后的表达模式 SP: 自花授粉; CP: 异花授粉。"

图1

转录组数据分析BoPUB9自花授粉和异花授粉后的表达模式 SP: 自花授粉; CP: 异花授粉。"

图2

甘蓝BoPUB9基因cDNA与gDNA PCR扩增产物电泳图 M: DNA分子量标准。"

图2

甘蓝BoPUB9基因cDNA与gDNA PCR扩增产物电泳图 M: DNA分子量标准。"

图3

甘蓝BoPUB9 cDNA与其氨基酸序列 实线框为U-box结构域, 虚线框为臂重复结构域。"

图3

甘蓝BoPUB9 cDNA与其氨基酸序列 实线框为U-box结构域, 虚线框为臂重复结构域。"

图4

BoPUB9与其他物种PUB9蛋白的系统进化树"

图4

BoPUB9与其他物种PUB9蛋白的系统进化树"

图5

甘蓝BoPUB9与其他物种的同源蛋白氨基酸序列比对 黑色: 氨基酸一致性为100%; 粉色: 氨基酸一致性为75%; 蓝色: 氨基酸一致性为50%。下画直线为U-box结构域, 下画虚线为臂重复区, 同时也代表该蛋白在这一区段保守性高。"

图5

甘蓝BoPUB9与其他物种的同源蛋白氨基酸序列比对 黑色: 氨基酸一致性为100%; 粉色: 氨基酸一致性为75%; 蓝色: 氨基酸一致性为50%。下画直线为U-box结构域, 下画虚线为臂重复区, 同时也代表该蛋白在这一区段保守性高。"

图6

甘蓝BoPUB9授粉后表达分析(A)和组织表达分析(B) SP: 自花授粉; CP: 异花授粉。"

图6

甘蓝BoPUB9授粉后表达分析(A)和组织表达分析(B) SP: 自花授粉; CP: 异花授粉。"

表3

BoPUB9上游调控区顺式作用元件"

相关功能预测
Putative associated function
启动子顺式作用元件
Cis-elements in the promoter region
脱落酸应答 Abscisic acid (ABA) response ABRE元件 ABRE
赤霉素应答 Gibberellin (GA) response GARE基序, P-box元件 GARE-motif, P-box
生长素应答 Auxin (IAA) response TGA元件 TGA-element
乙烯应答 Ethylene-response ERELEE4元件 ERELEE4
水杨酸反应 Salicylic acid (SA) response TCA元件 TCA-element
茉莉酸响应 MeJA-response CGTCA基序, TGACG基序 CGTCA-motif, TGACG-motif
花粉特异性顺式作用元件 Pollen-specific cis-acting element POLLENLELAT52元件 POLLENLELAT52
光响应 Light response G-Box元件, GT1基序, TCT基序
G-Box, GT1-motif, TCT-motif
低温响应 Low-temperature response LTR元件 LTR
干旱诱导 Drought induced response MBS元件 MBS
压力与防御相关反应元件 Stress and defense related response elements WBOXATNPR1元件 WBOXATNPR1

表3

BoPUB9上游调控区顺式作用元件"

相关功能预测
Putative associated function
启动子顺式作用元件
Cis-elements in the promoter region
脱落酸应答 Abscisic acid (ABA) response ABRE元件 ABRE
赤霉素应答 Gibberellin (GA) response GARE基序, P-box元件 GARE-motif, P-box
生长素应答 Auxin (IAA) response TGA元件 TGA-element
乙烯应答 Ethylene-response ERELEE4元件 ERELEE4
水杨酸反应 Salicylic acid (SA) response TCA元件 TCA-element
茉莉酸响应 MeJA-response CGTCA基序, TGACG基序 CGTCA-motif, TGACG-motif
花粉特异性顺式作用元件 Pollen-specific cis-acting element POLLENLELAT52元件 POLLENLELAT52
光响应 Light response G-Box元件, GT1基序, TCT基序
G-Box, GT1-motif, TCT-motif
低温响应 Low-temperature response LTR元件 LTR
干旱诱导 Drought induced response MBS元件 MBS
压力与防御相关反应元件 Stress and defense related response elements WBOXATNPR1元件 WBOXATNPR1

图7

BoPUB9-GUS转基因植株潮霉素筛选"

图7

BoPUB9-GUS转基因植株潮霉素筛选"

图8

GUS染色图 a: 果荚; c: 叶片; e: 花; g: 花蕾; b、d、f、h: 对照; 标尺为25 μm。"

图8

GUS染色图 a: 果荚; c: 叶片; e: 花; g: 花蕾; b、d、f、h: 对照; 标尺为25 μm。"

图9

BoPUB9-GFP融合蛋白的亚细胞定位 标尺为10 μm。"

图9

BoPUB9-GFP融合蛋白的亚细胞定位 标尺为10 μm。"

图10

BoPUB9 蛋白的原核表达 泳道1: 空载pGEX-4T-1; 泳道2: 诱导纯化的pGEX-4T- 1-BoPUB9; 泳道3: 诱导未纯化的的pGEX-4T-1-BoPUB9; 泳道4: 未诱导的pGEX-4T-1-BoPUB9。M: 蛋白分子量标准。"

图10

BoPUB9 蛋白的原核表达 泳道1: 空载pGEX-4T-1; 泳道2: 诱导纯化的pGEX-4T- 1-BoPUB9; 泳道3: 诱导未纯化的的pGEX-4T-1-BoPUB9; 泳道4: 未诱导的pGEX-4T-1-BoPUB9。M: 蛋白分子量标准。"

图11

酵母融合株的相互作用检测 DDO/X: SD/-Leu/-Trp/X-α-Gal酵母二缺培养基; /DDO: SD/-Leu/-Trp酵母二缺培养基; QDO: SD/-Ade/-His/-Leu/-Trp酵母四缺培养基。"

图11

酵母融合株的相互作用检测 DDO/X: SD/-Leu/-Trp/X-α-Gal酵母二缺培养基; /DDO: SD/-Leu/-Trp酵母二缺培养基; QDO: SD/-Ade/-His/-Leu/-Trp酵母四缺培养基。"

图12

融合蛋白纯化与体外互作检测结果 泳道1: BoPUB9-His; 泳道2: BoSRKj-GST; 泳道3: BoPUB9-His×GST; 泳道4: BoPUB9-His×BoSRKj-GST。M: DNA分子量标准。"

图12

融合蛋白纯化与体外互作检测结果 泳道1: BoPUB9-His; 泳道2: BoSRKj-GST; 泳道3: BoPUB9-His×GST; 泳道4: BoPUB9-His×BoSRKj-GST。M: DNA分子量标准。"

[1] Tantikanjana T, Nasrallah M E, Nasrallah J B. Complex networks of self-incompatibility signaling in the Brassicaceae. Curr Opin Plant Biol, 2010, 13:520-526.
[2] 刘素玲, 赵国建, 吴欣, 张百行, 高岭巍, 丁美玲, 陈威. 植物自交不亲和机制研究进展. 中国农业科技导报, 2016, 18(4):31-37.
Liu S L, Zhao G J, Wu X, Zhang B X, Gao L W, Ding M L, Chen W. Research progress on the mechanism of plant self- incompatibility. J Agric Sci Technol, 2016, 18(4):31-37 (in Chinese with English abstract).
[3] Doucet J, Lee H K, Goring D R. Pollen acceptance or rejection: a tale of two pathways. Trends Plant Sci, 2016, 21:1058-1067.
[4] 朱利泉, 周燕, 甘蓝自交不亲和性信号传导元件与传导过程. 作物学报, 2015, 41:1-14.
Zhu L Q, Zhou Y. Protein elements and signal transduction process of self-incompatibility in Brassica oleracea. Acta Agron Sin, 2015, 41:1-14.
[5] Nasrallah J B, Nasrallah M E. Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. Plant Cell, 2014, 26:3838-3841.
[6] Indriolo E, Goring D R. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility. Front Plant Sci, 2014, 5:181.
[7] Nasrallah J B, Liu P, Sherman-Broyles S, Schmidt R, Nasrallah M E. Epigenetic mechanisms for breakdown of self-incompatibility in interspecific hybrids. Genetics, 2007, 175:1965-1973.
[8] Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15:885-898.
[9] Wiborg J, O’Shea C, Skriver K. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochem J, 2008, 413:447-457.
[10] Tu D, Li W, Ye Y, Brunger A T. Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p. Proc Natl Acad Sci USA, 2007, 104:15599-15606.
[11] Wang N, Liu Y, Cong Y, Wang T, Zhong X, Yang S, Li Y, Gai J. Genome-wide identification of soybean U-Box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol, 2016, 57:1189-1209.
[12] Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain asembly. Cell, 1999, 96:635-644.
Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain asembly. Cell, 1999, 96:635-644.
[13] Azevedo C, Santos-Rosa M J, Shirasu K. The U-box protein family in plants. Trends Plant Sci, 2001, 6:354-358.
Azevedo C, Santos-Rosa M J, Shirasu K. The U-box protein family in plants. Trends Plant Sci, 2001, 6:354-358.
[14] Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot, 2009, 60:1109-1121.
Yee D, Goring D R. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot, 2009, 60:1109-1121.
[15] Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel K H, Schafer P. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol, 2011, 156:726-740.
Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel K H, Schafer P. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol, 2011, 156:726-740.
[16] Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne T P, He P, Shan L. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 2011, 332:1439-1442.
Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne T P, He P, Shan L. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 2011, 332:1439-1442.
[17] Chen Y C, Wong C L, Muzzi F, Vlaardingerbroek I, Kidd B N, Schenk P M. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance. Sci Rep, 2014, 4:5584.
Chen Y C, Wong C L, Muzzi F, Vlaardingerbroek I, Kidd B N, Schenk P M. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance. Sci Rep, 2014, 4:5584.
[18] Stone S L, Arnoldo M, Goring D R. A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science, 1999, 286:1729-1731.
Stone S L, Arnoldo M, Goring D R. A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science, 1999, 286:1729-1731.
[19] Indriolo E, Tharmapalan P, Wright S I, Goring D R. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection. Plant Cell, 2012, 24:4607-4620.
Indriolo E, Tharmapalan P, Wright S I, Goring D R. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection. Plant Cell, 2012, 24:4607-4620.
[20] Yu F, Wu Y, Xie Q. Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant, 2016, 9:21-33.
Yu F, Wu Y, Xie Q. Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant, 2016, 9:21-33.
[21] Trujillo M, Ichimura K, Casais C, Shirasu K. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol, 2008, 18:1396-1401.
Trujillo M, Ichimura K, Casais C, Shirasu K. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol, 2008, 18:1396-1401.
[22] Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J, 1994, 5:421-427.
Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J, 1994, 5:421-427.
[23] Su S, Dai H, Wang X, Wang C, Zeng W, Huang J, Duan Q. Ethylene negatively mediates self-incompatibility response in Brassica rapa. Biochem Biophys Res Commun, 2020, 525:600-606.
Su S, Dai H, Wang X, Wang C, Zeng W, Huang J, Duan Q. Ethylene negatively mediates self-incompatibility response in Brassica rapa. Biochem Biophys Res Commun, 2020, 525:600-606.
[24] Liu J, Park C H, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang G L. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog, 2015, 11:e1004629.
Liu J, Park C H, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X, Liu W, Ning Y, Kawano Y, Wang G L. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog, 2015, 11:e1004629.
[25] Antignani V, Klocko A L, Bak G, Chandrasekaran S D, Dunivin T, Nielsen E. Recruitment of PLANT U-BOX13 and the PI4K beta1/beta2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. Plant Cell, 2015, 27:243-261.
Antignani V, Klocko A L, Bak G, Chandrasekaran S D, Dunivin T, Nielsen E. Recruitment of PLANT U-BOX13 and the PI4K beta1/beta2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. Plant Cell, 2015, 27:243-261.
[26] Amador V, Monte E, Garcia-Martinez J L, Prat S. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell, 2001, 106:343-354.
Amador V, Monte E, Garcia-Martinez J L, Prat S. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell, 2001, 106:343-354.
[27] Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16:2795-2808.
Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16:2795-2808.
[28] Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J, 2009, 59:39-51.
Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J, 2009, 59:39-51.
[29] Kim M, Cho H S, Kim D M, Lee J H, Pai H S. CHRK1, a chitinase-related receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco. Biochim Biophys Acta, 2003, 1651:50-59.
Kim M, Cho H S, Kim D M, Lee J H, Pai H S. CHRK1, a chitinase-related receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco. Biochim Biophys Acta, 2003, 1651:50-59.
[30] Mbengue M, Camut S, Fernanda D, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Herve C, Cullimore J, Lefebvre B. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell, 2010, 22:3474-3488.
Mbengue M, Camut S, Fernanda D, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Herve C, Cullimore J, Lefebvre B. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell, 2010, 22:3474-3488.
[31] Scandola S, Samuel M A. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Curr Biol, 2019, 29:506-512, e504.
Scandola S, Samuel M A. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Curr Biol, 2019, 29:506-512, e504.
[32] Lian X, Zeng J, Zhang H, Converse R, Wang Y, Bai X, Zhu L. PUB7, a pollen expression gene induced by self-pollination, negatively regulates pollen germination. Acta Biochim Biophys Sin(Shanghai), 2019, 51:548-551.
Lian X, Zeng J, Zhang H, Converse R, Wang Y, Bai X, Zhu L. PUB7, a pollen expression gene induced by self-pollination, negatively regulates pollen germination. Acta Biochim Biophys Sin(Shanghai), 2019, 51:548-551.
[33] Shi S, Gao Q, Zuo T, Lei Z, Pu Q, Wang Y, Liu G, He X, Ren X, Zhu L. Identification and characterization of BoPUB3: a novel interaction protein with S-locus receptor kinase in Brassica oleracea L. Acta Biochim Biophys Sin(Shanghai), 2019, 51:723-733.
Shi S, Gao Q, Zuo T, Lei Z, Pu Q, Wang Y, Liu G, He X, Ren X, Zhu L. Identification and characterization of BoPUB3: a novel interaction protein with S-locus receptor kinase in Brassica oleracea L. Acta Biochim Biophys Sin(Shanghai), 2019, 51:723-733.
[34] Hu D, Xie Q, Liu Q, Zuo T, Zhang H, Zhang Y, Lian X, Zhu L. Genome-wide distribution, expression and function analysis of the U-Box gene family in Brassica oleracea L. Genes(Basel), 2019, 10:1000.
Hu D, Xie Q, Liu Q, Zuo T, Zhang H, Zhang Y, Lian X, Zhu L. Genome-wide distribution, expression and function analysis of the U-Box gene family in Brassica oleracea L. Genes(Basel), 2019, 10:1000.
[35] Samuel M A, Mudgil Y, Salt J N, Delmas F, Ramachandran S, Chilelli A, Goring D R. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol, 2008, 147:2084-2095.
Samuel M A, Mudgil Y, Salt J N, Delmas F, Ramachandran S, Chilelli A, Goring D R. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol, 2008, 147:2084-2095.
[36] Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15:885-898.
Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15:885-898.
[37] Shi S, Gao Q, Zeng J, Liu X, Pu Q, Liu G, Zhang H, Yang X, Zhu L. N-terminal domains of ARC1 are essential for interaction with the N-terminal region of Exo70A1 in transducing self-incompatibility of Brassica oleracea. Acta Biochim Biophys Sin(Shanghai), 2016, 48:777-787.
Shi S, Gao Q, Zeng J, Liu X, Pu Q, Liu G, Zhang H, Yang X, Zhu L. N-terminal domains of ARC1 are essential for interaction with the N-terminal region of Exo70A1 in transducing self-incompatibility of Brassica oleracea. Acta Biochim Biophys Sin(Shanghai), 2016, 48:777-787.
[38] Jiang J, Jiang J, Qiu L, Miao Y, Yao L, Cao J. Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis.Genome, 2013, 56:39-48.
Jiang J, Jiang J, Qiu L, Miao Y, Yao L, Cao J. Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis.Genome, 2013, 56:39-48.
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[10] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[11] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[12] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[13] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[14] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[15] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!