欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1354-1360.doi: 10.3724/SP.J.1006.2012.01354

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦TaPHYA基因亚家族的克隆及表达分析

王霞1,2,**,马燕斌2,3,4,**,宋梅芳2,孟凡华2,李秀全2,杨丽2,吴霞4,杨克诚3,*,杨建平2,*   

  1. 1山西运城学院生命科学系,山西运城 044000;2中国农业科学院作物科学研究所,北京100081;3四川农业大学玉米研究所,四川雅安625014;
    4山西省农业科学院棉花研究所,山西运城 044000
  • 收稿日期:2012-03-08 修回日期:2012-04-20 出版日期:2012-08-12 网络出版日期:2012-06-05
  • 通讯作者: 杨建平, E-mail: yangjianping@caas.net.cn, Tel: 010-82105859; 杨克诚, Tel: 0835-2882465
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2011ZX08010-002), 国家重点基础研究发展计划(973计划)项目(2009CB118300)和国家高技术研究发展计划(863计划)项目(2008AA10Z121)资助。

Isolation and Expression Patterns of TaPHYA Gene Subfamily in Common Wheat

WANG Xia1,2,**,MA Yan-Bin2,3,4,**,MENG Fan-Hua2,LI Xiu-Quan2,YANG Li2,Wu-Xia4,YANG Ke-Cheng3,*,YANG Jian-Ping2 ,*   

  1. 1 Department of Life Science, Yuncheng University, Yuncheng 044000, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Maize Research Institute, Sichuan Agricultural University, Ya’an 450002, China; 4 Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, China
  • Received:2012-03-08 Revised:2012-04-20 Published:2012-08-12 Published online:2012-06-05
  • Contact: 杨建平, E-mail: yangjianping@caas.net.cn, Tel: 010-82105859; 杨克诚, Tel: 0835-2882465

摘要: 光敏色素是一类与作物农艺性状密切相关的基因家族。本研究克隆了中国春小麦光敏色素TaPHYA1、TaPHYA2和TaPHYA3基因完整的编码序列,并对它们进行了生物信息学以及转录分析。在NCBI数据库中对其推测的氨基酸序列进行BLAST分析,发现TaPHYA1和TaPHYA3氨基酸序列中包含光敏色素基因完整的功能结构域。系统进化树分析表明,小麦TaPHYA1、TaPHYA2和TaPHYA3之间进化关系相近,且与单子叶植物玉米、水稻的PHYA聚为一个亚类。另外,TaPHYA的表达丰度具有组织特异性,在茎、叶、穗中表达量分别是根中的1.35、0.34和0.87倍;而在同光质条件下,其表达丰度也具有光质特异性,TaPHYA的总表达量在黑暗和远红光条件下最高,在蓝光条件下次之,而红光和白光条件下最低。该结果为深入研究小麦光敏色素A基因亚家族的功能奠定了基础。

关键词: 小麦, 光敏色素A, 组织特异性, 表达分析

Abstract: Phytochromes (PHYs) are important genes relating to crop agronomic traits. In this paper, TaPHYA1, TaPHYA2, and TaPHYA3 were cloned fromcv. Chinese Spring(Triticum aestivum L.). Theputative domains ofTaPHYA1, TaPHYA2, and TaPHYA3 proteins were predicted via the NCBI Protein BLAST. Either TaPHYA1 or TaPHYA3 was composed of a GAF domain, a PHYtochrome domain, two PAS domains, a His Kinase A domain, and a Histidine kinase-like ATPase domain.Phylogenetic tree analysis indicated that TaPHYA1, TaPHYA2, and TaPHYA3 were closer to PHYA members of monocot plants (ZmPHYA, SbPHYA, and OsPHYA) rather than to those of dicot plants (AtPHYA and GmPHYA). Expression levels of TaPHYAs were analyzed using semi quantitative RT-PCR and real time PCR assays.Tissue-specific expression of total TaPHYA was also detected in stem, leaf, and spike,whose levelswere 1.35, 0.34, and 0.87 times of that in root. Additionally, TaPHYA showed high expression level in darkness, far-red, and blue light conditions, but low expression level in red and white light conditions. The transcription level of TaPHYA in the seedlings grown in the darkness or under far-red light was four or three times of that in seedlings grown in red light, respectively.

Key words: Triticum aestivum, Phytochrome A, Tissue-specific expression, Transcription expression analysis

[1]Wang H, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003, 8: 172–178

[2]Schepens I, Duek P, Fankhauser C. Phytochrome-mediated light signalling in Arabidopsis. Curr Opin Plant Biol, 2004, 7: 564–569

[3]Garg A K, Sawers R J H, Wang H, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627–636

[4]Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol, 1999, 120: 73–81

[5]Dehesh K, Tepperman J, Christensen A H, Quail P H. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet, 1991, 225: 305–313

[6]Basu D, Dehesh K, Schneider-Poetsch H J, Harrington S E, McCouch S R, Quail P H. Rice PhyC gene: structure, expression, map position and evolution. Plant Mol Biol, 2000, 44: 27–42

[7]Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M. Isolation and characterization of rice phytochrome A mutants. Plant Cell, 2001, 13: 521–534

[8]Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005, 17: 3311–3325

[9]Sheehan M J, Farmer P R, Brutnell T P. Structure and expression of maize phytochrome family homeologs. Genetics, 2004, 167: 1395–1405

[10]Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997, 94: 6809–6814

[11]Ma Y-B(马燕斌), Li Z(李壮), Cai Y-F(蔡应繁), Zhou P(周朋), Xiao Y(肖阳), Huang Y-B(黄玉碧), Fu F-L(付凤玲), Pan G-T(潘光堂), Yang K-C(杨克诚), Yang J-P (杨建平). Isolation, protein structures and expression patterns responding to different light treatments of two phytochrome A genes in maize (Zea mays L.). Sci Agric Sin (中国农业科学), 2010, 43(10): 1985–1993 (in Chinese with English abstract)

[12]Wu F Q, Zhang X M, Li D M, Fu Y F. Ectopic expression reveals a conserved PHYB homolog in soybean. PLoS One, 2011, 6: e27737. DOI: 10.1371/journal.pone.0027737

[13]Ogihara Y, Shimizu, H, Hasegawa K, Tsujimoto H, Sasakuma T. Chromosome assignment of four photosynthesis-related genes and their variability in wheat species. Theor Appl Genet, 1994, 88: 383–394

[14]Kulshreshtha R, Kumar N, Balyan H S, Gupta P K, Khurana P, Tyagi A K, Khurana J P. Structural characterization, expression analysis and evolution of the red/far-red sensing photoreceptor gene, phytochrome C (PhyC), localized on the ‘B’ genome of hexaploid wheat (Triticum aestivum L.). Planta, 2005, 221: 675–689

[15]Li Z(李壮), Ma Y-B (马燕斌), Cai Y-F(蔡应繁), Wu S-W(吴锁伟), Xiao Y(肖阳), Meng F-H(孟凡华), Fu F-L(付风铃), Huang Y-B(黄玉碧), Yang J-P(杨建平). Cloning and expression analysis of TaPhyB3 in Triticum aestivum. Acta Agron Sin (作物学报), 2010, 36(5): 779–787 (in Chinese with English abstract)

[16]Devos K M, Beales J, Ogihara Y, Doust A N. Comparative sequence analysis of the Phytochrome C gene and its upstream region in allohexaploid wheat reveals new data on the evolution of its three constituent genomes. Plant Mol Biol, 2005, 58: 625–641

[17]Yu B-L(余波澜), Huang C-F(黄朝峰), Zhou W-J(周文娟), Zhang W-J(张文俊). Evolution study of wheat (Tritium aestivum L.) A, B and D genome based on DNA sequence similarity. Acta Genet Sin (遗传学报), 2001, 28(7): 635–639 (in Chinese with English abstract)

[18]Yu H-X (于海霞), Tian J-C(田纪春). Review of genome B in T. aestivum L. Mol Plant Breed (分子植物育种), 2008, 6(4): 724–732 (in Chinese with English abstract)

[19]Clough R C, Jordan-Beebe E T. Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation. Plant J, 1999, 17: 155–167

[20]Weller J L, Batge S L, Smith J J, Kerckhoffs L H, Sineshchekov V A, Murfet I C, Reid J B. A dominant mutation in the pea PHYA gene confers enhanced responses to light and impairs the light-dependent degradation of phytochrome A. Plant Physiol, 2004, 135: 2186–2195

[21]Müller R, Fernández A P, Hiltbrunner A, Schäfer E, Kretsch T. The histidine kinase-related domain of Arabidopsis phytochrome A controls the spectral sensitivity and the subcellular distribution of the photoreceptor. Plant Physiol, 2009, 150: 1297–1309

[22]Hennig L, Buche C. Dynamic properties of endogenous phytochrome A in Arabidopsis seedlings. Plant Physiol, 1999, 121: 571–577

[23]Quail P H. Phytochrome: A light-activated molecular switch that regulates plant gene expression. Annu Rev Genet, 1991, 25: 389–409

[24]Wang H, Ma L, Habashi J, Li J, Zhao H, Deng X W. Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. Plant J, 2002, 32: 723–733

[25]Canton F R, Quail P H. Both phyA and phyB mediate light-imposed repression of PhyA gene expression in Arabidopsis. Plant Physiol, 1999, 121: 1207–1215

[26]Somers D E, Quail P H. Temporal and spatial expression patterns of PhyA and PhyB genes in Arabidopsis. Plant J, 1995, 7: 413–427
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!