欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (05): 672-685.doi: 10.3724/SP.J.1006.2018.00672

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米种子萌发相关性状的全基因组关联分析

田润苗1,*(), 张雪海1,*, 汤继华1, 白光红2, 付志远1,*()   

  1. 1河南农业大学农学院, 河南郑州 450002
    2新疆农业大学, 新疆乌鲁木齐830052
  • 收稿日期:2017-11-02 接受日期:2018-03-15 出版日期:2018-05-20 网络出版日期:2018-03-16
  • 通讯作者: 田润苗,张雪海,付志远
  • 作者简介:

    第一作者联系方式: E-mail: tianrunmiao@foxmail.com ** 同等贡献(Contributed equally to this work)

  • 基金资助:
    本研究由国家自然科学基金地区科学基金项目(31760389)资助

Genome-wide Association Studies of Seed Germination Related Traits in Maize

Run-Miao TIAN1,**(), Xue-Hai ZHANG1,**, Ji-Hua TANG1, Guang-Hong BAI2, Zhi-Yuan FU1,*()   

  1. 1 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2 Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2017-11-02 Accepted:2018-03-15 Published:2018-05-20 Published online:2018-03-16
  • Contact: Run-Miao TIAN,Xue-Hai ZHANG,Zhi-Yuan FU
  • Supported by:
    This study was supported by the Regional Science Foundation of National Natural Science Foundation of China (31760389).

摘要:

种子萌发是出苗的前提, 对玉米产量影响重大。为了解玉米种子萌发相关性状的遗传机制, 本研究对476份玉米自交系种子萌发相关的6个性状进行调查, 结合125万个(1.25M) SNP标记, 利用3种统计模型(Q, K, Q+K)进行全基因关联分析(GWAS)。结果表明K模型能够较好地评价吸胀前重量、吸胀前体积、吸胀后重量、吸胀后体积和吸胀体积5个性状; Q+K模型能更好地评价吸胀重量性状。基于这6个性状的最优模型的GWAS结果, 共检测到15个种子萌发相关性状的显著SNP, 15个SNP对应6个QTL, 集中分布在玉米第3、第6、第7和第10染色体上, QTL内单个SNP能解释的表型变异为5.09%~7.85%。其中5个QTL可在多个生物学重复中被检测到。以最显著SNP所在基因或附近基因作为QTL的候选基因, 共筛选到6个最可能的候选基因。GRMZM2G148411是吸胀后重量、吸胀重量和吸胀体积3个性状共同鉴定到的QTL候选基因, 根据基因的功能注释, 该基因编码一个包含TLD-domain的钙离子结合蛋白, 可能是一种调控种子休眠与萌发的信号分子。本研究鉴定的QTL为解析玉米种子萌发的遗传机制和相应功能标记的开发奠定了基础。

关键词: 玉米, 种子萌发, 全基因组关联分析, 候选基因

Abstract:

Germination is important for seed emergence, which has significant impact on maize yield. To reveal the genetic mechanism of maize seed germination, we investigated six traits related to seed germination using 467 diverse inbred lines. The genome-wide association studies (GWAS) between the six traits and 1.25M SNPs were implemented in three different models (Q model, K model, and Q+K model). The K model was much better than the other two models for weight before imbibition, volume before imbibition, weight after imbibition, volume after imbibition and volume of imbibition. While weight of imbibition trait could be well evaluated by Q+K model. In total, 15 SNPs were significantly associated with the six traits by the optimal model. These SNPs correspond to six QTLs, including five QTLs co-located in different biological replications. The six QTLs were located on chromosomes 3, 6, 7, and 10. The single SNP could explain 5.09%-7.85% variation of phenotype. Genes within or nearby most significant SNP were selected as candidates, and six candidate genes were identified for seed germination related traits in the six loci. Among these genes, GRMZM2G148411 encoding a TLD-domain calcium ion binding protein according to the annotations associated with weight after imbibition, volume after imbibition and volume of imbibition might be a signal molecule regulating seed germination and dormancy. The QTLs identified in this study are useful for developing functional markers and elucidating the genetic basis of seed germination.

Key words: maize, seed germination, genome-wide association study, candidate gene

图1

种子萌发性状的频次分布图各性状详细名称见表1。"

表1

种子萌发性状表型统计分析"

性状
Trait
平均值±标准差
Mean± SD
变幅
Range
变异系数
CV (%)
峰度
Skewness
偏度
Kurtosis
W1 (g) 4.92±0.92 1.63-7.40 18.77 0.22 0.07
V1 (mL) 4.43±0.77 2.57-6.47 17.35 0.42 -0.03
W2 (g) 6.52±1.19 2.02-9.86 18.29 0.25 0.23
V2 (mL) 5.87±1.06 1.93-9.20 18.06 0.43 0.33
W3 (g) 1.61±0.35 0.38-2.72 21.77 0.55 0.54
V3 (mL) 1.44±0.41 0.35-2.76 28.41 0.25 -0.13

表2

种子萌发性状方差分析"

性状
Trait
变异来源
Variation source
自由度
df
均方
MS
F
F-value
W1 材料Variety 475 2.56 52.99**
重复Repeat 2 0.11 2.27
误差Error 940 0.05
V1 材料Variety 475 1.77 14.50**
重复Repeat 2 0.96 7.85**
误差Error 941 0.12
W2 材料Variety 475 4.24 32.12**
重复Repeat 2 4.31 32.68**
误差Error 940 0.13
V2 材料Variety 475 3.35 19.35**
重复Repeat 2 0.33 1.93
误差Error 93 0.17
W3 材料Variety 475 0.36 8.28**
重复Repeat 2 4.02 92.23**
误差Error 934 0.04
V3 材料Variety 475 0.50 2.62**
重复Repeat 2 1.32 6.96**
误差Error 932 0.19

表3

种子萌发性状皮尔逊关联分析"

性状 Trait W1 V1 W2 V2 W3
V1 0.955**
W2 0.976** 0.956**
V2 0.935** 0.942** 0.966**
W3 0.675** 0.725** 0.821** 0.811**
V3 0.606** 0.543** 0.682** 0.793** 0.724**

图2

种子萌发性状3种模型比较的QQ图各性状详细名称见表1。横轴表示经过负的常数对数转换的期望P值, 纵轴表示经过负的常数对数转换观察到的P值。"

图3

种子萌发性状全基因组关联分析曼哈顿图各性状详细名称见表1。黑色虚线代表全基因组关联分析的显著阈值。"

图4

种子萌发性状全基因组关联分析曼哈顿图(单个重复) 各性状详细名称见表1。R1: 第1重复; R2: 第2重复, R3: 第3重复。黑色虚线代表全基因组关联分析的显著阈值。"

表4

种子萌发候选基因及功能注释"

表5

种子萌发性状显著关联位点"

性状
Trait
重复
Repeat
候选位点
Locus
SNP 染色体
Chr.
物理位置
Position
P
P-value
贡献率
R2 (%)
W1 1 Chr4: 2865435-2865435? Chr4.S_2925435 4 2925435 7.76×10-7 8.33
Chr7: 4798028-4858028 Chr7.S_4828028 7 4828028 1.48×10-6 5.58
2 Chr10: 139810517-139870517 Chr10.S_139840517 10 139840517 1.87×10-6 9.60
W1 Chr7: 4798028-4858028 Chr7.S_4828028 7 4828028 4.34×10-7 6.10
Chr7.S_4828028 7 4828028 7.66×10-7 5.84
W2 1 Chr10: 6343038-6403038 Chr10.S_6373105 10 6373105 1.81×10-6 5.16
Chr10: 117510861-117630861 Chr10.S_117570861 10 117570861 1.16×10-6 5.21
Chr4: 2865435-2865435 Chr4.S_2925435 4 2925435 3.83×10-7 8.73
Chr7: 4798028-4858028 Chr7.S_4828028 7 4828028 1.57×10-6 5.54
2 Chr10: 6343038-6403038 Chr10.S_6373105 10 6373105 1.86×10-6 5.14
Chr3: 209027864-209147864 Chr3.S_209087864 3 209087864 1.58×10-6 9.50
Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 1.75×10-6 5.25
Chr10.S_6373105 10 6373105 1.50×10-6 5.27
Chr9: 144257637-144377637 Chr9.S_144308026 9 144308026 1.77×10-6 5.08
Chr9.S_144308098 9 144308098 2.01×10-6 5.05
Chr9.S_144309854 9 144309854 1.77×10-6 5.08
Chr9.S_144309860 9 144309860 3.69×10-7 5.77
W2 Chr9.S_144317637 9 144317637 2.21×10-7 6.56
Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 1.86×10-6 5.17
Chr10.S_6373105 10 6373105 1.16×10-6 5.34
W3 1 Chr1: 206063394-206183394 Chr1.S_206123394 1 206123394 1.55×10-6 5.31
3 Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 1.01×10-7 5.92
Chr10.S_6373105 10 6373105 1.75×10-8 6.60
Chr2: 152687771-152807771 Chr2.S_205719834 2 205719834 6.26×10-7 7.05
Chr2.S_205770041 2 205770041 5.71×10-7 5.02
Chr2.S_205771072 2 205771072 5.71×10-7 5.02
Chr2.S_205771170 2 205771170 5.71×10-7 5.02
Chr2.S_205771560 2 205771560 5.71×10-7 5.02
Chr2.S_205771697 2 205771697 5.71×10-7 5.02
Chr2.S_205772111 2 205772111 5.71×10-7 5.02
Chr2.S_205773201 2 205773201 5.71×10-7 5.02
Chr2.S_205774142 2 205774142 5.71×10-7 5.02
Chr5:152687771-152807771 Chr5.S_152747771 5 152747771 4.70×10-7 8.78
Chr6: 95574386-95634386 Chr6.S_98573207 6 98573207 4.22×10-7 5.78
Chr9: 26957278-27077278 Chr9.S_27017278 9 27017278 1.47×10-6 5.13
W3 Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 3.22×10-9 8.06
Chr10.S_6373105 10 6373105 5.75×10-9 7.73
V1 1 Chr4: 2865435- 2865435? Chr4.S_2925435 4 2925435 8.89×10-7 8.44
Chr6: 6778454-6838454 Chr6.S_6808454 6 6808454 1.38×10-6 8.07
2 Chr10: 139780517-139900517 Chr10.S_139840517 10 139840517 3.47×10-7 10.56
Chr9: 144257637- 144377637 Chr9.S_144309860 9 144309860 1.60×10-6 5.12
3 Chr6: 95574386-95634386 Chr6.S_95604386 6 95604386 8.22×10-7 5.32
Chr6.S_95604517 6 95604517 1.42×10-6 5.08
Chr6.S_95604625 6 95604625 1.42×10-6 5.08
性状
Trait
重复
Repeat
候选位点
Locus
SNP 染色体
Chr.
物理位置
Position
P
P-value
贡献率
R2 (%)
Chr6.S_95604950 6 95604950 1.11×10-6 5.20
Chr6.S_95605307 6 95605307 1.21×10-6 5.14
Chr6.S_95605330 6 95605330 1.10×10-6 5.22
Chr6.S_95605331 6 95605331 1.95×10-6 5.04
Chr6.S_95605458 6 95605458 1.21×10-6 5.14
Chr6.S_95605541 6 95605541 1.21×10-6 5.14
Chr8: 14037401-14157401 Chr8.S_14097401 8 14097401 1.93×10-6 5.71
V1 Chr6: 6778454-6838454 Chr6.S_6808454 6 6808454 2.01×10-6 7.85
Chr6: 95574386-95634386 Chr6.S_95604386 6 95604386 8.76×10-7 5.28
Chr6.S_95604517 6 95604517 1.31×10-6 5.10
Chr6.S_95604625 6 95604625 1.31×10-6 5.10
Chr6.S_95604950 6 95604950 1.08×10-6 5.19
Chr6.S_95605307 6 95605307 1.14×10-6 5.16
Chr6.S_95605330 6 95605330 1.03×10-6 5.23
Chr6.S_95605331 6 95605331 1.67×10-6 5.09
Chr6.S_95605458 6 95605458 1.14×10-6 5.16
Chr6.S_95605541 6 95605541 1.14×10-6 5.16
V2 1 Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 5.73×10-7 5.73
Chr4: 2865435-2865435 Chr4.S_2925435 4 2925435 1.49×10-6 7.54
Chr4: 185676597-185796597 Chr4.S_185736597 4 185736597 5.59×10-7 7.89
2 Chr10: 6147016-6267016 Chr10.S_6207016 10 6207016 1.14×10-6 8.84
V3 1 Chr2: 182455178-182575178 Chr2.S_182515178 2 182515178 9.03×10-7 5.98
Chr7: 145940024-146000024 Chr7.S_145970024 7 145970024 4.26×10-7 5.75
2 Chr1: 262661257-262781257 Chr1.S_262721257 1 262721257 1.59×10-6 5.55
Chr5: 213497149-213617149 Chr5.S_213557149 5 213557149 8.90×10-7 5.68
3 Chr7: 95428593-95548593 Chr7.S_95488593 7 95488593 1.05×10-6 7.48
Chr7.S_95488613 7 95488613 1.43×10-6 6.80
V3 Chr10: 6343038-6403038 Chr10.S_6373038 10 6373038 1.60×10-6 5.21
Chr3: 197628474-197688474 Chr3.S_197658474 3 197658474 1.72×10-6 5.93
Chr7: 145940024-146000024 Chr7.S_145970024 7 145970024 1.70×10-6 5.13
[1] Ellis R H.Seed and seedling vigor in relation to crop growth and yield.Plant Growth Regul, 1992, 11: 249-255
doi: 10.1007/BF00024563
[2] Candela H, Hake S.The art and design of genetic screens: maize.Nat Rev Genet, 2008, 9: 192-203
doi: 10.1038/nrg2291 pmid: 18250623
[3] Below F E, Seebauer J R, Uribelarrea M, Schneerman M C, Moose S P.Physiological changes accompanying long-term selection for grain protein in maize. In: Janick J ed. Plant Breeding Reviews. New York: John Wiley & Sons, 2004. pp 133-151
doi: 10.1002/9780470650240.ch7
[4] Klein R J, Zeiss C, Chew E Y, Tsai J Y, Sackler R S, Haynes C, Henning A K, SanGiovanni J P, Mane S M, Mayne S T, Bracken M B, Ferris F L, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308: 385-389
doi: 10.1126/science.1109557 pmid: 15761122
[5] Atwell S, Huang Y S, Vilhjálmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker J R, Faure N, Kniskern J M, Jones J D, Michael T, Nemri A, Roux F, Salt D E, Tang C, Todesco M, Traw M B, Weigel D, Marjoram P, Borevitz J O, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature, 2010, 465: 627-631
[6] Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B.Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2011, 44: 32-39
doi: 10.1038/ng.1018 pmid: 22138690
[7] Xiao Y J, Liu H J, Wu L J, Warburton M, Yan J B.Genome-wide association studies in maize: praise and stargaze.Mol Plant, 2017, 10: 359-374
doi: 10.1016/j.molp.2016.12.008 pmid: 28039028
[8] Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M L, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B.Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013, 45: 43-50
doi: 10.1038/ng.2484 pmid: 23242369
[9] Liu H J, Luo X, Niu L Y, Xiao Y J, Chen L, Liu J, Wang X G, Jin M L, Li W Q, Zhang Q H, Yan J B.Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize.Mol Plant, 2017, 10: 414-426
doi: 10.1016/j.molp.2016.06.016 pmid: 27381443
[10] Huang J, Zhang J H, Li W Z, Hu W, Duan L C, Feng Y Z, Qiu F Z, Yue B.Genome-wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize.J Integr Plant Biol, 2013, 55: 735-744
doi: 10.1111/jipb.v55.8
[11] Shi Y Y, Gao L L, Wu Z C, Zhang X J, Wang M M, Zhang C S, Zhang F, Zhou Y L, Li Z K.Genome-wide association study of salt tolerance at the seed germination stage in rice.BMC Plant Biol, 2017, 17: 92
doi: 10.1186/s12870-017-1044-0 pmid: 5450148
[12] Kan G Z, Zhang W, Yang W M, Ma D Y, Zhang D, Hao D R, Hu Z B, Yu D Y.Association mapping of soybean seed germination under salt stress.Mol Genet Genomics, 2015, 290: 2147-2162
doi: 10.1007/s00438-015-1066-y pmid: 26001372
[13] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination.New Phytol, 2006, 171: 501-523
doi: 10.1111/nph.2006.171.issue-3
[14] Fu Z Y, Jin X N, Ding D, Li Y L, Fu Z J, Tang J H.Proteomic analysis of heterosis during maize seed germination.Proteomics, 2011, 11: 1462-1472
doi: 10.1002/pmic.201000481 pmid: 21365753
[15] Hu S D, Lübberstedt T, Zhao G W, Lee M.QTL mapping of low-temperature germination ability in the maize IBM Syn4 RIL population.PLoS One, 2016, 11: e0152795
doi: 10.1371/journal.pone.0152795 pmid: 4816396
[16] Han Z P, Ku L X, Zhang Z Z, Zhang J, Guo S L, Liu H V, Zhao R F, Ren Z Z, Zhang L K, Su H H, Dong L, Chen Y H.QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions.PLoS One, 2014, 9: e92535
doi: 10.1371/journal.pone.0092535 pmid: 3961396
[17] Yazdanpanah F, Hanson J, Hilhorst H, Bentsink L.Differentially expressed genes during the imbibition of dormant and after- ripened seeds—a reverse genetics approach.BMC Plant Biol, 2017, 17: 151-162
doi: 10.1186/s12870-017-1098-z pmid: 28893189
[18] Li Y S, Yuan F, Wen Z H, Li Y H, Wang F, Zhu T, Zhuo W Q, Jin X, Wang Y D, Zhao H P, Pei Z M, Han S C.Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biol, 2015, 15: 261-273
doi: 10.1186/s12870-015-0653-8 pmid: 4624379
[19] Noblet A, Leymarie J, Bailly C.Chilling temperature remodels phospholipidome of Zea mays seeds during imbibition. Sci Rep, 2017, 7: 8886
doi: 10.1038/s41598-017-08904-z pmid: 28827663
[20] Deng M, Li D Q, Luo J Y, Xiao Y J, Liu H J, Pan Q C, Zhang X H, Jin M L, Zhao M C, Yan J B.The genetic architecture of amino acids dissection by association and linkage analysis in maize.Plant Biotechnol J, 2017, 15: 1250-1263
doi: 10.1111/pbi.12712 pmid: 5595712
[21] Wang M, Yan J B, Zhao J R, Song W, Zhang X B, Xiao Y N, Zheng Y L.Genome-wide association study (GWAS) of resistance to head smut in maize.Plant Sci, 2012, 196: 125-131
doi: 10.1016/j.plantsci.2012.08.004 pmid: 23017907
[22] Batak I, Devic M, Giba Z, Grubisic D, Poff K L, Konjevic R.The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds. Seed Sci Res, 2002, 12: 253-259
[23] Bethke P C, Gubler F, Jacobsen J V, Jones R L.Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide.Planta, 2004, 219: 847-855
[24] Bethke P C, Libourel I G, Reinohl V, Jones R L.Sodium nitroprusside, cyanide, nitrite and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner.Planta, 2006, 223: 805-812
doi: 10.1007/s00425-005-0116-9 pmid: 16151848
[25] Sarath G, Bethke P C, Jones R, Baird L M, Hou G, Mitchell R B.Nitric oxide accelerates seed germination in warm-season grasses.Planta, 2006, 223: 1154-1164
doi: 10.1007/s00425-005-0162-3 pmid: 16369800
[26] Fontaine O, Huault C, Pavis N, Billard J P.Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity.Plant Physiol Biochem, 1994, 32: 677-683
[27] El-Maarouf-Bouteau H, Bailly C. Oxidative signaling in seed germination and dormancy.Plant Signal Behav, 2008, 3: 175-182
doi: 10.4161/psb.3.3.5539 pmid: 2634111
[28] Ishibashi Y, Kasa S, Sakamoto M, Aoki N, Kai K, Yuasa T, Hanada A, Yamaguchi S, Iwaya-Inoue M.A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination.PLoS One, 2015, 10: e0143173
doi: 10.1371/journal.pone.0143173 pmid: 26579718
[29] Baek D, Cha J Y, Kang S, Park B, Lee H J, Hong H, Chun H J, Kim D H, Kim M C, Lee S Y, Yun D J.The Arabidopsisa zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress.Front Plant Sci, 2015, 6: 963
doi: 10.3389/fpls.2015.00963 pmid: 4631831
[30] Joseph M P, Papdi C, Kozma-Bognár L, Nagy I, López-Carbonell M, Rigó G, Koncz C, Szabados L.The Arabidopsis ZINC FINGER PROTEIN3 interferes with abscisic acid and light signaling in seed germination and plant development.Plant Physiol, 2014, 165: 1203-1220
doi: 10.1104/pp.113.234294 pmid: 24808098
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[11] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[12] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[13] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[14] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[15] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!