欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1822-1831.doi: 10.3724/SP.J.1006.2019.94054

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆抗SC3候选基因的克隆及分析

向文扬,杨永庆,任秋燕,晋彤彤,王丽群,王大刚,智海剑()   

  1. 南京农业大学大豆研究所 / 农业部大豆生物学与遗传育种重点实验室 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2019-04-02 接受日期:2019-06-22 出版日期:2019-12-12 网络出版日期:2019-07-15
  • 通讯作者: 智海剑
  • 作者简介:向文扬, E-mail: a15295572307@163.com
  • 基金资助:
    本研究由国家转基因生物新品种培育科技重大专项(2016ZX08004-004)(2016ZX08004-004);国家自然科学基金项目(31571690);国家自然科学基金项目(31571687);中央高校基本科研业务费专项(KYT201801);长江学者和创新团队发展计划项目(PCSIRT_17R55);国家现代农业产业技术体系建设专项(CARS-004);江苏省现代作物生产协同创新项目(JCIC-MCP);国家重点研发计划项目(2017YFD0101501)

Cloning and analysis of candidate gene resistant to SC3 in soybean

Wen-Yang XIANG,Yong-Qing YANG,Qiu-Yan REN,Tong-Tong JIN,Li-Qun WANG,Da-Gang WANG,Hai-Jian ZHI()   

  1. Institute of Soybean, Nanjing Agricultural University / Key Laboratory of Soybean Biology and Genetic Breeding, Ministry of Agriculture / National Center for Soybean Improvement / State Key Laboratory of Crop Genetics & Germplasm Innovation, Nanjing 210095, Jiangsu, China
  • Received:2019-04-02 Accepted:2019-06-22 Published:2019-12-12 Published online:2019-07-15
  • Contact: Hai-Jian ZHI
  • Supported by:
    This study was supported by the Fund of Transgenic Breeding for Soybean Resistance to Soybean mosaic virus(2016ZX08004-004);the National Natural Science Foundation of China(31571690);the National Natural Science Foundation of China(31571687);the Fundamental Research Funds for the Central Universities(KYT201801);the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT_17R55);the National Soybean Industrial Technology System of China(CARS-004);Jiangsu Collaborative Innovation Center for Modern Crop Production(JCIC-MCP);the National Key R&D Program of China(2017YFD0101501)

摘要:

大豆花叶病毒(Soybean mosaic virus, SMV)病是大豆主要的病害之一, 给我国大豆生产带来了巨大的损失。大豆抗病育种是目前防治大豆花叶病毒病最为经济有效的措施, 发掘抗病基因是抗病育种的基础。本文在前期对大豆抗SMV株系SC3基因精细定位的基础上, 克隆了2个具有TIR-NBS-LRR典型抗病结构域的基因(GmR47GmR51)。生物信息学分析表明, GmR47GmR51基因均在抗感品种中存在氨基酸位点的突变, 而且突变位点都位于保守结构域内, 这2个基因编码的蛋白质预测为烟草花叶病毒(TMV)抗性N蛋白; 物种间同源比对结果显示, GmR47GmR51基因与野生大豆亲缘较近。qRT-PCR结果表明, GmR47GmR51能够响应SMV的侵染增加表达量, 且在抗病品种中的表达量高于感病品种。2个基因存在IN1、IN2和IN3不同的剪接体, 所有的剪接体都能够响应病毒的诱导增加表达量, 且在抗病品种中的表达量高于感病品种, IN1和IN2的表达量随时间的变化较为明显, IN3的表达量则相对稳定, 说明这些剪接体可能参与大豆对SMV的抗病过程。本研究为后续基因功能的研究奠定了基础。

关键词: 大豆花叶病毒, 抗病基因, 诱导表达, 可变剪接

Abstract:

Soybean mosaic virus (SMV) is one of the prevalent pathogens of soybean, causing great reduction of soybean yield worldwide. Soybean disease resistance-breeding is currently the most cost-effective measure to control SMV, and identification of resistance genes is the basis of disease resistance breeding. According to the previous mapping result of resistance gene to SMV strain SC3, two genes (GmR47, GmR51) with TIR-NBS-LRR domain were cloned. Bioinformatics analysis showed that both GmR47 and GmR51 genes have SNP mutations in the susceptible varieties and resistant varieties, and the mutation sites are located in the conserved domain. These two proteins encoded by GmR47 and GmR51 genes are predicted to be Tobacco mosaic virus (TMV) resistant N proteins. The results of homologous alignment between species indicated that GmR47 and GmR51 genes were close to those of wild soybean. The expression of GmR47 and GmR51 was analyzed after inoculation with soybean mosaic virus in soybean, demonstrating that GmR47 and GmR51 could increase the expression level in response to SMV infection, with the higher level in resistant varieties than in susceptible varieties. Analysis of the alternative splicing of GmR47 and GmR51 revealed that the two genes have different splice variants IN1, IN2, and IN3. The response analysis of splices to SMV showed that all splices were able to increase the expression in response to virus induction, with the higher level in resistant varieties than in susceptible varieties. It indicated that these alternative splicing may be involved in the disease resistance process of soybean to SMV. The result of this study lay a foundation for the study of subsequent gene function.

Key words: Soybean mosaic virus (SMV), resistance gene, inducing expression, alternative splicing

表1

基因克隆引物及荧光定量引物"

引物名称
Primer name
上游引物
Forward primer (5'-3')
下游引物
Reverse primer (5'-3')
GmR47-1 TTTCAGAATCTATTGATATTAGGG TCTGTGAAACTATGCCTTGC
GmR51-1 GGATTGGAGTGGGAGGA GGGTTGAAGCAACGAAA
GmR47-2 TGGGATTGGAGTGGGAGGAGT CCATCAAAGTTGAATCCCAATTCAC
GmR51-2 GGGAGGAGTTGAATTAGCG CCAGTCTCCACCACTTTGTT
GmR47/51-qPCR GTAGGGGTCTTTGTTGATGTTGATT TCTGAGAAACTCCTATGTCCGCTA
Tubulin-qPCR AGTATGAGGACGAGGAGGACGAT TACGCATCACATAGCATAAGTAAGACAC

表2

可变剪接检测引物及荧光定量引物"

引物名称
Primer name
引物
Primer (5'-3')
Intron1-Uni F: TTCGGAGGCGATTGAACAT
R: TGCTCAATTTGATCAATTAATTAAACTCA
Intron2-Uni F: AAATTGTTCGACAGGAATCACC
R: TGGCAGAAACTCGACGTAATG
Intron3-Uni F: CTCTTGAATCCACCAAAGCAGG
R: AGTTCATATGATTAGAAGAACATGTAGAG
Intron1-Spe F: ATCTACTAGTCATATGGATTTGCTCAATTTGATCAATTAATTAAACTCA
R: CGGTACCCGGGGATCCGATTTTCGGAGGCGATTGAACAT
Intron2-Spe F: CGGTACCCGGGGATCCGATTAAATTGTTCGACAGGAATCACC
R: ATCTACTAGTCATATGGATTTGGCAGAAACTCGACGTAATG
Intron3-Spe F: CGGTACCCGGGGATCCGATTCTCTTGAATCCACCAAAGCAGG
R: ATCTACTAGTCATATGGATTAGTTCATATGATTAGAAGAACATGTAGAG
Intron1-qPCR F: GAAATGGAGGAACGCACTGC
R: AAGATCGACAAGAAGATATTACCTGAA
Intron2-qPCR F: GGCAAACGCAGTAGGTTATGG
R: ATACCATCAATAGAATGGCAGAAACT
Intron3-qPCR F: ATGTAGGAGAATGCTACTGAAACAGG
R: AGAATATCTCTTATTTCCAGCCTCAT

图1

GmR47和GmR51编码蛋白质的保守结构域预测 A: GmR47编码蛋白质的保守结构域预测。B: GmR51编码蛋白质的保守结构域预测。"

图2

GmR47和GmR51编码的核苷酸序列在抗病品种(PI96983)及感病品种(南农1138-2)之间的比对结果 A: GmR47编码氨基酸序列的比对结果。B: GmR51编码氨基酸序列比对的结果。"

图3

GmR47和GmR51基因在不同物种间的同源进化树"

图4

GmR47 (A)和GmR51 (B)基因编码的氨基酸序列二级结构预测结果"

图5

抗感品种中GmR47和GmR51基因编码合成的蛋白质三维结构预测结果 A: PI96983 GmR47; B: PI96983 GmR51; C: 南农1138-2 GmR47; D: 南农1138-2 GmR51。"

图6

PI96983和南农1138-2接种SMV后GmR47及GmR51基因的总表达量随时间的变化"

图7

可变剪接体的凝胶电泳检测结果 上排条带为常规引物扩增的结果, 下排条带为内含子特异性引物的扩增结果, 相邻的4个条带为4个品种间的扩增结果。A: 齐黄1号; B: PI96983; C: 南农1138-2; D: Williams 82; M: marker。"

图8

可变剪接测序结果 A: GmR47基因可变剪接体示意图; B: IN1序列; C: IN2序列; D: IN3序列。"

图9

PI96983和南农1138-2接种SMV后GmR47及GmR51基因在不同内含子处的剪切体的总表达量随时间的变化 A: 内含子1处的剪接体的总表达量; B: 内含子2处的剪接体的总表达量; C: 内含子3处的剪接体的总表达量。"

图10

候选基因与GFP融合蛋白在烟草细胞中的亚细胞定位结果"

[1] Hill J H, Whitham S A . Control of virus diseases in soybeans. Adv Virus Res, 2014,90:355-390.
[2] Kendrick J B, Gardner M W . Soybean mosaic: seed transmission and effect on yield. J Agric Res, 1924,27:91-98.
[3] Heinze K, Köhler E . The mosaic disease of the soybean and its transmission by insects. Phytopathol Z, 1940,13:207-242.
[4] Yu Y G, Maroof M A S, Buss G R . Divergence and allelomorphic relationship of a soybean virus resistance gene based on tightly linked DNA microsatellite and RFLP markers. Theor Appl Genet, 1996,92:64-69.
doi: 10.1007/BF00222952
[5] Hayes A J, Ma G, Buss G R, Maroof S . Molecular marker mapping of RSV4, a gene conferring resistance to all known strains of Soybean mosaic virus. Crop Sci, 2000,40:1434-1437.
[6] Jeong S C, Hayes A J, Biyashev R M, Maroof S . Diversity and evolution of a non-TIR-NBS sequence family that clusters to a chromosomal “hotspot” for disease resistance genes in soybean. Theor Appl Genet, 2001,103:406-414.
doi: 10.1007/s001220100567
[7] Klepadlo M, Chen P, Shi A, Mason R E, Korth K L, Srivastava V . Single nucleotide polymorphism markers for rapid detection of the Rsv4 locus for Soybean mosaic virus resistance in diverse germplasm. Mol Breed, 2017,37:10.
doi: 10.1007/s11032-016-0595-3
[8] Bent A F, Kunkel B N, Dahlbeck D, Brown K L, Schmidt R L, Giraudat J, Leung J L, Staskawicz B J . RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science, 1994,265:1856-1860.
doi: 10.1126/science.8091210
[9] Grant M R, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes R W, Dangl J L . Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995,269:843-846.
doi: 10.1126/science.7638602
[10] Parker J E, Coleman M J, Szab V, Frost L N, Schmidt R, Biezen E A V D, Moores T, Dean C, Daniels M J, Jones J D . The arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell, 1997,9:879-894.
doi: 10.1105/tpc.9.6.879
[11] Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T . Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998,95:1663-1668.
doi: 10.1073/pnas.95.4.1663
[12] Davis C L . Identification, Validation, Mapping of Phytophthora sojae and Soybean mosaic virus Resistance Genes in Soybean. PhD Dissertation of Virginia Tech, Blacksburg, USA, 2017.
[13] Tran P T, Widyasari K, Seo J K, Kim K H . Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to Soybean mosaic virus. Virology, 2018,513:153-159.
doi: 10.1016/j.virol.2017.10.014
[14] 郭小勤, 李德葆 . 植物前体mRNA的选择性剪接. 农业生物技术学报, 2006,14:809-815.
Guo X Q, Li D B . Pre-mRNA alternative splicing in plants. Chin J Agric Biotechol, 2006,14:809-815 (in Chinese with English abstract).
[15] Brack C, Hirama M, Lenhardschuller R, Tonegawa S . A complete immunoglobulin gene is created by somatic recombination. Cell, 1978,15:1-14.
doi: 10.1016/0092-8674(78)90078-8
[16] Ali G S, Reddy A S N . Regulation of Alternative Splicing of Pre-mRNAs by Stresses. Heidelberg: Springer, 2008. pp 257-275.
[17] Gassmann W . Alternative splicing in plant defense. Curr Top Microbiol, 2008,326:219-233.
[18] Jang Y H, Lee J H, Park H Y, Kim S K, Lee B Y, Suh M C, Kim J K . OsFCA transcripts show more complex alternative processing patterns than its Arabidopsis counterparts. J Plant Biol, 2009,52:161-166.
doi: 10.1007/s12374-009-9018-x
[19] Modrek B, Lee C . A genomic view of alternative splicing. Nat Genet, 2001,30:13-19.
doi: 10.1038/ng0102-13
[20] Lal S, Choi J H, Shaw J R, Hannah L C . A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation. Plant Physiol, 1999,121:411-418.
doi: 10.1104/pp.121.2.411
[21] Yang Y, Zheng G, Han L, Wang D G, Yang X F, Yuan Y, Huang S H, Zhi H J . Genetic analysis and mapping of genes for resistance to multiple strains of Soybean mosaic virus in a single resistant soybean accession PI96983. Theor Appl Genet, 2013,126:1783-1791.
doi: 10.1007/s00122-013-2092-y
[22] 刘玉芝, 廖林, 孙大敏 . 对大豆花叶病毒(SMV)病抗源的筛选. 吉林农业科学, 1997,1:30-34.
Liu Y Z, Liao L, Sun D M . Screening for resistant sources of soybean germplasm to SMV. J Jilin Agric Sci. 1997,1:30-34 (in Chinese with English abstract).
[23] 纪冬, 辛绍杰 . 实时荧光定量PCR的发展和数据分析. 生物技术通讯, 2009,20:598-600.
Ji D, Xin S J . Development and data analysis of real-time fluorescent quantitative PCR. Lett Biotech, 2009,20:598-600 (in Chinese with English abstract).
[24] 李晓君, 王绍梅, 谢艳兰, 和敏 . 农杆菌渗透法转化烟草条件的优化. 江苏农业科学, 2014,42(9):45-47.
Li X J, Wang S M, Xie Y L, He M . Optimization of agrobacterium-infiltration method for transformation of tobacco. Jiangsu Agric Sci, 2014,42(9):45-47 (in Chinese).
[25] Hayes A J, Jeong S C, Gore M A, Yu Y G, Buss G R, Tolin S, Maroof S . Recombination within a Nucleotide-Binding-Site/ Leucine-Rich-Repeat gene vluster produces new variants conditioning resistance to Soybean mosaic virus in soybeans. Genetics, 2004,166:493-503.
doi: 10.1534/genetics.166.1.493
[26] 黄赛花, 郑桂杰, 杨永庆, 智海剑 . 利用VIGS技术对抗SMV候选基因GmZ15的功能分析. 大豆科学, 2015,34:582-587.
Huang S H, Zheng G J, Yang Y Q, Zhi H J . Analysis on the candidate resistance gene GmZ15 to soybean mosaic virus by VIGS. Soybean Sci, 2015,34:582-587 (in Chinese with English abstract).
[27] Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J B, Fournier E, Tharreau D, Terauchi R, Kroj T . The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell, 2013,25:1463-1481.
doi: 10.1105/tpc.112.107201
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[3] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[4] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[5] 宋凝曦, 李霞, 王净, 吴博晗, 曹悦, 杨杰, 谢寅峰. 大环内酯类和高表达玉米C4-PEPC基因对水稻耐旱性的影响[J]. 作物学报, 2021, 47(10): 1927-1940.
[6] 冯韬,谭晖,官梅,官春云. BnaBZR1BnaPIF4基因调控甘蓝型油菜弱光光效的机制[J]. 作物学报, 2020, 46(8): 1146-1156.
[7] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[8] 肖燕, 姚珺玥, 刘冬, 宋海星, 张振华. 甘蓝型油菜响应低氮胁迫的表达谱分析[J]. 作物学报, 2020, 46(10): 1526-1538.
[9] 肖湘谊,史学涛,盛浩闻,刘金灵,肖应辉. 水稻抗稻瘟病基因Pi47的精细定位和候选基因分析[J]. 作物学报, 2018, 44(7): 977-987.
[10] 杨向东,牛陆,张伟,杨静,杜茜,邢国杰,郭东全,李启云,董英山*. RNAi介导SMV-P3基因沉默增强大豆对花叶病毒病的抗性[J]. 作物学报, 2016, 42(11): 1647-1655.
[11] 朱亚军,孙强,王金明,陈凯,冯博,方雅洁,林秀云,徐建龙*. 粳稻品种吉粳809的稻瘟病抗性基因分析[J]. 作物学报, 2016, 42(11): 1638-1646.
[12] 吕高强,吴向阳,王心宇. 芝麻中一个富含脯氨酸新基因的克隆与特征分析[J]. 作物学报, 2015, 41(12): 1810-1818.
[13] 林静,杨永庆,侯文焕,杨春燕,谢令琴,智海剑,张孟臣. 重组型大豆花叶病毒河北分离物序列特征及侵染性[J]. 作物学报, 2015, 41(11): 1657-1662.
[14] 管昌英,郭军,薛凤博,张广旭,王宏伟,李安飞,孔令让. 普通小麦DH155抗白粉病基因的分子作图及应用分子标记辅助选择将其转移[J]. 作物学报, 2015, 41(08): 1183-1190.
[15] 王仲怡,付海宁,孙素丽,段灿星,武小菲,杨晓明,朱振东. 豌豆品系X9002抗白粉病基因鉴定[J]. 作物学报, 2015, 41(04): 515-523.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!