作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1822-1831.doi: 10.3724/SP.J.1006.2019.94054
Wen-Yang XIANG,Yong-Qing YANG,Qiu-Yan REN,Tong-Tong JIN,Li-Qun WANG,Da-Gang WANG,Hai-Jian ZHI()
摘要:
大豆花叶病毒(Soybean mosaic virus, SMV)病是大豆主要的病害之一, 给我国大豆生产带来了巨大的损失。大豆抗病育种是目前防治大豆花叶病毒病最为经济有效的措施, 发掘抗病基因是抗病育种的基础。本文在前期对大豆抗SMV株系SC3基因精细定位的基础上, 克隆了2个具有TIR-NBS-LRR典型抗病结构域的基因(GmR47和GmR51)。生物信息学分析表明, GmR47和GmR51基因均在抗感品种中存在氨基酸位点的突变, 而且突变位点都位于保守结构域内, 这2个基因编码的蛋白质预测为烟草花叶病毒(TMV)抗性N蛋白; 物种间同源比对结果显示, GmR47和GmR51基因与野生大豆亲缘较近。qRT-PCR结果表明, GmR47和GmR51能够响应SMV的侵染增加表达量, 且在抗病品种中的表达量高于感病品种。2个基因存在IN1、IN2和IN3不同的剪接体, 所有的剪接体都能够响应病毒的诱导增加表达量, 且在抗病品种中的表达量高于感病品种, IN1和IN2的表达量随时间的变化较为明显, IN3的表达量则相对稳定, 说明这些剪接体可能参与大豆对SMV的抗病过程。本研究为后续基因功能的研究奠定了基础。
[1] | Hill J H, Whitham S A . Control of virus diseases in soybeans. Adv Virus Res, 2014,90:355-390. |
[2] | Kendrick J B, Gardner M W . Soybean mosaic: seed transmission and effect on yield. J Agric Res, 1924,27:91-98. |
[3] | Heinze K, Köhler E . The mosaic disease of the soybean and its transmission by insects. Phytopathol Z, 1940,13:207-242. |
[4] |
Yu Y G, Maroof M A S, Buss G R . Divergence and allelomorphic relationship of a soybean virus resistance gene based on tightly linked DNA microsatellite and RFLP markers. Theor Appl Genet, 1996,92:64-69.
doi: 10.1007/BF00222952 |
[5] | Hayes A J, Ma G, Buss G R, Maroof S . Molecular marker mapping of RSV4, a gene conferring resistance to all known strains of Soybean mosaic virus. Crop Sci, 2000,40:1434-1437. |
[6] |
Jeong S C, Hayes A J, Biyashev R M, Maroof S . Diversity and evolution of a non-TIR-NBS sequence family that clusters to a chromosomal “hotspot” for disease resistance genes in soybean. Theor Appl Genet, 2001,103:406-414.
doi: 10.1007/s001220100567 |
[7] |
Klepadlo M, Chen P, Shi A, Mason R E, Korth K L, Srivastava V . Single nucleotide polymorphism markers for rapid detection of the Rsv4 locus for Soybean mosaic virus resistance in diverse germplasm. Mol Breed, 2017,37:10.
doi: 10.1007/s11032-016-0595-3 |
[8] |
Bent A F, Kunkel B N, Dahlbeck D, Brown K L, Schmidt R L, Giraudat J, Leung J L, Staskawicz B J . RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science, 1994,265:1856-1860.
doi: 10.1126/science.8091210 |
[9] |
Grant M R, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes R W, Dangl J L . Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995,269:843-846.
doi: 10.1126/science.7638602 |
[10] |
Parker J E, Coleman M J, Szab V, Frost L N, Schmidt R, Biezen E A V D, Moores T, Dean C, Daniels M J, Jones J D . The arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell, 1997,9:879-894.
doi: 10.1105/tpc.9.6.879 |
[11] |
Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T . Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998,95:1663-1668.
doi: 10.1073/pnas.95.4.1663 |
[12] | Davis C L . Identification, Validation, Mapping of Phytophthora sojae and Soybean mosaic virus Resistance Genes in Soybean. PhD Dissertation of Virginia Tech, Blacksburg, USA, 2017. |
[13] |
Tran P T, Widyasari K, Seo J K, Kim K H . Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to Soybean mosaic virus. Virology, 2018,513:153-159.
doi: 10.1016/j.virol.2017.10.014 |
[14] | 郭小勤, 李德葆 . 植物前体mRNA的选择性剪接. 农业生物技术学报, 2006,14:809-815. |
Guo X Q, Li D B . Pre-mRNA alternative splicing in plants. Chin J Agric Biotechol, 2006,14:809-815 (in Chinese with English abstract). | |
[15] |
Brack C, Hirama M, Lenhardschuller R, Tonegawa S . A complete immunoglobulin gene is created by somatic recombination. Cell, 1978,15:1-14.
doi: 10.1016/0092-8674(78)90078-8 |
[16] | Ali G S, Reddy A S N . Regulation of Alternative Splicing of Pre-mRNAs by Stresses. Heidelberg: Springer, 2008. pp 257-275. |
[17] | Gassmann W . Alternative splicing in plant defense. Curr Top Microbiol, 2008,326:219-233. |
[18] |
Jang Y H, Lee J H, Park H Y, Kim S K, Lee B Y, Suh M C, Kim J K . OsFCA transcripts show more complex alternative processing patterns than its Arabidopsis counterparts. J Plant Biol, 2009,52:161-166.
doi: 10.1007/s12374-009-9018-x |
[19] |
Modrek B, Lee C . A genomic view of alternative splicing. Nat Genet, 2001,30:13-19.
doi: 10.1038/ng0102-13 |
[20] |
Lal S, Choi J H, Shaw J R, Hannah L C . A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation. Plant Physiol, 1999,121:411-418.
doi: 10.1104/pp.121.2.411 |
[21] |
Yang Y, Zheng G, Han L, Wang D G, Yang X F, Yuan Y, Huang S H, Zhi H J . Genetic analysis and mapping of genes for resistance to multiple strains of Soybean mosaic virus in a single resistant soybean accession PI96983. Theor Appl Genet, 2013,126:1783-1791.
doi: 10.1007/s00122-013-2092-y |
[22] | 刘玉芝, 廖林, 孙大敏 . 对大豆花叶病毒(SMV)病抗源的筛选. 吉林农业科学, 1997,1:30-34. |
Liu Y Z, Liao L, Sun D M . Screening for resistant sources of soybean germplasm to SMV. J Jilin Agric Sci. 1997,1:30-34 (in Chinese with English abstract). | |
[23] | 纪冬, 辛绍杰 . 实时荧光定量PCR的发展和数据分析. 生物技术通讯, 2009,20:598-600. |
Ji D, Xin S J . Development and data analysis of real-time fluorescent quantitative PCR. Lett Biotech, 2009,20:598-600 (in Chinese with English abstract). | |
[24] | 李晓君, 王绍梅, 谢艳兰, 和敏 . 农杆菌渗透法转化烟草条件的优化. 江苏农业科学, 2014,42(9):45-47. |
Li X J, Wang S M, Xie Y L, He M . Optimization of agrobacterium-infiltration method for transformation of tobacco. Jiangsu Agric Sci, 2014,42(9):45-47 (in Chinese). | |
[25] |
Hayes A J, Jeong S C, Gore M A, Yu Y G, Buss G R, Tolin S, Maroof S . Recombination within a Nucleotide-Binding-Site/ Leucine-Rich-Repeat gene vluster produces new variants conditioning resistance to Soybean mosaic virus in soybeans. Genetics, 2004,166:493-503.
doi: 10.1534/genetics.166.1.493 |
[26] | 黄赛花, 郑桂杰, 杨永庆, 智海剑 . 利用VIGS技术对抗SMV候选基因GmZ15的功能分析. 大豆科学, 2015,34:582-587. |
Huang S H, Zheng G J, Yang Y Q, Zhi H J . Analysis on the candidate resistance gene GmZ15 to soybean mosaic virus by VIGS. Soybean Sci, 2015,34:582-587 (in Chinese with English abstract). | |
[27] |
Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J B, Fournier E, Tharreau D, Terauchi R, Kroj T . The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell, 2013,25:1463-1481.
doi: 10.1105/tpc.112.107201 |
[1] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[2] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[3] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[4] | 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323. |
[5] | 宋凝曦, 李霞, 王净, 吴博晗, 曹悦, 杨杰, 谢寅峰. 大环内酯类和高表达玉米C4-PEPC基因对水稻耐旱性的影响[J]. 作物学报, 2021, 47(10): 1927-1940. |
[6] | 冯韬,谭晖,官梅,官春云. BnaBZR1和BnaPIF4基因调控甘蓝型油菜弱光光效的机制[J]. 作物学报, 2020, 46(8): 1146-1156. |
[7] | 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005. |
[8] | 肖燕, 姚珺玥, 刘冬, 宋海星, 张振华. 甘蓝型油菜响应低氮胁迫的表达谱分析[J]. 作物学报, 2020, 46(10): 1526-1538. |
[9] | 肖湘谊,史学涛,盛浩闻,刘金灵,肖应辉. 水稻抗稻瘟病基因Pi47的精细定位和候选基因分析[J]. 作物学报, 2018, 44(7): 977-987. |
[10] | 杨向东,牛陆,张伟,杨静,杜茜,邢国杰,郭东全,李启云,董英山*. RNAi介导SMV-P3基因沉默增强大豆对花叶病毒病的抗性[J]. 作物学报, 2016, 42(11): 1647-1655. |
[11] | 朱亚军,孙强,王金明,陈凯,冯博,方雅洁,林秀云,徐建龙*. 粳稻品种吉粳809的稻瘟病抗性基因分析[J]. 作物学报, 2016, 42(11): 1638-1646. |
[12] | 吕高强,吴向阳,王心宇. 芝麻中一个富含脯氨酸新基因的克隆与特征分析[J]. 作物学报, 2015, 41(12): 1810-1818. |
[13] | 林静,杨永庆,侯文焕,杨春燕,谢令琴,智海剑,张孟臣. 重组型大豆花叶病毒河北分离物序列特征及侵染性[J]. 作物学报, 2015, 41(11): 1657-1662. |
[14] | 管昌英,郭军,薛凤博,张广旭,王宏伟,李安飞,孔令让. 普通小麦DH155抗白粉病基因的分子作图及应用分子标记辅助选择将其转移[J]. 作物学报, 2015, 41(08): 1183-1190. |
[15] | 王仲怡,付海宁,孙素丽,段灿星,武小菲,杨晓明,朱振东. 豌豆品系X9002抗白粉病基因鉴定[J]. 作物学报, 2015, 41(04): 515-523. |
|