欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (12): 1810-1818.doi: 10.3724/SP.J.1006.2015.01810

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

芝麻中一个富含脯氨酸新基因的克隆与特征分析

吕高强,吴向阳,王心宇*   

  1. 南京农业大学生命科学学院,江苏南京 210095
  • 收稿日期:2015-04-13 修回日期:2015-07-20 出版日期:2015-12-12 网络出版日期:2015-08-28
  • 通讯作者: 王心宇, E-mail: xywang@njau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB109300)资助。

Cloning and Characterization of a Novel Gene Encoding Proline-Rich Protein in Sesame

LÜ Gao-Qiang,WU Xiang-Yang,WANG Xin-Yu*   

  1. College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2015-04-13 Revised:2015-07-20 Published:2015-12-12 Published online:2015-08-28
  • Contact: 王心宇, E-mail: xywang@njau.edu.cn
  • Supported by:

    This research was supported by the National Basic Research Program of China (973 Program) (2011CB109300).

摘要:

芝麻青枯病是影响我国南方芝麻产量及品质的重要病害。该病属细菌病害,由青枯雷尔氏菌引起。本研究利用随机引物对芝麻受青枯雷尔氏菌诱导前后进行基因差异表达分析,发现一个诱导明显下调的基因(片段)。将该片段克隆、测序后,在芝麻基因组数据库中比对其序列, 得到一个ORF完整的全长基因。序列分析表明该基因无内含子,ORF长度为1458 bp,编码486氨基酸,其N端富含脯氨酸及富含脯氨酸的重复序列,属于富含脯氨酸蛋白(proline-rich proteinPRP),将其命名为SiPRP (Sesaumu indicunm proline-rich protein)。根据该基因ORF两翼序列设计引物在芝麻cDNA中克隆到该基因,测序结果与预测序列一致。Blast分析表明该基因编码蛋白与其它植物中发现的PRP蛋白同源性很低,且其富含脯氨酸的重复序列在其他植物中也未发现,推测为一个新型富含脯氨酸蛋白。进一步设计基因专化的定量及半定量PCR引物进行其诱导表达分析,再次证明该基因受病菌诱导后下调表达。与其他植物中发现的大多数PRP蛋白定位于细胞壁不同,SiPRP主要定位于细胞膜,少量可以分泌到细胞外。烟草表皮细胞瞬时表达显示该蛋白定位在细胞膜上的特殊结构,推测该蛋白在芝麻和青枯雷尔氏菌的互作中发挥重要作用。

关键词: 芝麻, 青枯雷尔氏菌, 富含脯氨酸的蛋白, 诱导表达, 亚细胞定位

Abstract:

Bacterial wilt of sesame is a major threat in sesame production in south China, resulting seriously in yield and quality losses. The disease is caused by bacterial pathogen Ralstonia solanacearum. This study profiled the gene expression of sesame inoculated with Ralstonia solanacearum by using fifty random primers. A gene (fragment) was found to be drastically down regulated by the pathogen. The gene fragment was cloned and sequenced. Using the sequence as queries, the sesame genome database (http://www.ncbi.nlm.nih.gov/) was searched and the corresponding DNA sequence containing a complete ORF was obtained. The full-length of the gene shows that its encoding region is 1458 bp, encoding a putative protein of 486 amino acids. The protein is rich in proline on its N-terminus, and has several repeat sequences (motifs) rich in proline, suggesting that it belongs to proline-rich protein (PRP) family. The protein was named as SiPRP (Sesaumu indicunm Proline-rich Protein). The encoding region of SiPRP was further amplified in sesame cDNAs, sequencing analysis demonstrated that it has the same sequence with the predicted one. Blast analysis revealed that the protein has the lower homology with other plant PRPs, and has new types of proline-rich motifs, suggesting that SiPRP is a new member in PRP family. Semi quantitative RT-PCR and qPCR with newly designed gene-specific primers verified that SiPRP expression was drastically down regulated upon pathogen infection. Previous studies showed that most plant PRPs were located on plant cell wall, however, transient expression in onion epidermal cells showed that SiPRP-YFP fusion protein was located on cell membrane, with a bit secreted outside the cell. Transient expression in tobacco cells revealed that SiPRP protein might be located on special structures of the membrane. SiPRP protein identified in this study may play pivotal roles in Ralstonia solanacearum-sesame interactions.

Key words: Sesame (Sesaumu indicunm), Ralstonia solanacearum, Proline-rich protein, Induced expression, Subcellular localization





[1]华菊玲, 胡白石, 李湘民, 黄瑞荣, 刘光荣. 芝麻细菌性青枯病病原菌及其生化变种鉴定. 植物保护学报, 2012, 39: 39–44



Hua J L, Hu B S, Li X M, Huang R R, Liu G R. Identification of the pathogen causing bacterial wilt of sesame and its biovars. Acta Phytophyl Sin, 2012, 39: 39–44



[2]Nemo P, Alice G, Fabienne V, Marc V. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol, 2013, 14, 651–662



[3]Vasse J, Frey P, Trigalet A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact, 1995, 8: 241−251



[4]Deepak S, Shailasree S, Kini S K, Muck A, Mithofer A, Shetty S H. Hydroxyproline–richglycopprotein and plant defence. J Phytopathol, 2010, 158: 585–593



[5]Sujeeth N, Deepak S, Shailasree S, Kini K, Shetty S H, Hille J. Hydroxyproline–rich glycoproteins accumulate in pearl millet after seed treatment with elicitors of defense responses against Sclerospra graminicola. Physiol Mol Plant Pathol, 2010, 74: 230–237



[6]Corbin D R, Sauer N, Lamb C J. Differential regulation of a hydroxyproline–rich glycoprotein gene family in wounded and infected plants. Mol Cell Biol, 1987, 7: 4337–4344



[7]Brisson L F, Tenhaken R., Lamb C. Function of oxidative cross–linking of cell wall structural proteins in plant disease resistance. Plant Cell, 1994, 6: 1703–1712



[8]Varner J E, Lin L S. Plant cell wall architecture. Cell, 1989, 56: 231–239



[9]Lam C J, Lawton M A, Dron M, Dixon R A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell, 1989, 56:



215–224



[10]Guo W, Anil H S. Extensin over–expression in Arabidopsis limits pathogen invasiveness. Mol Plant Pathol, 2006, 7: 579–592



[11]Balaji V, Smart C D. Over–expression of snaking–2 and extension–like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michigancesis subsp. michiganensis in transgenic tomato. Transgenic Res, 2012, 21: 23–37



[12]Bradley D J, Kjellbom P, Lamb C J. Elicitor– and wound–induced oxidative cross–linking of a proline–rich plant cell wall protein: A novel, rapid defense response. Cell, 1992, 70: 21–30



[13]Sheng J S, Ovidio R D, Mehdy M C. Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding. Plant J, 1991, 1: 345–354



[14]Yeom S I, Seo E, Oh S K, Kim K W, Choi D. A common plant cell-wall protein HyPRP1 has dual role as a positive regulator of cell death and a negative regulator of basal defence against pathogens. Plant J, 2012, 69, 755–768



[15]Schönfeld J, Heuer H, Elsas J D, Smalla K. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl Environ Microbiol, 2003, 69: 7248–7256



[16]Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning, 2nd Edn. Beijing: Scientific Publishers, 1992. pp 11–66



[17]Wei L B, Miao H M, Zhao R H, Han X H, Zhang T D, Zhang H Y. Identification and testing of reference genes for sesame gene expression analysis by    quantitative Real-time PCR. Planta, 2013, 237: 873–889



[18]Williamson M P. The structure and function of proline–rich regions in proteins. Biochem J, 1994, 297: 249–20



[19]Dvo?áková L, Cvr?ková F, Fischer L. Analysis of the hybrid proline–rich protein families from seven plant species uggests rapid diversification of their sequences and expression patterns. BMC Genomics, 2007, 8: 412



[20]Neto L B, Oliveira R R, Wiebke S B, Bencke M, Weber R L M, Cabreira C, Abdelnoor R V, Marcelino F C, Zanettini M H B, Passaglia L M P. Identification of the soybean HyPRP family and specific gene response to Asian soybean rust disease. Genet Mol Biol, 2013, 36: 214–224



[21]Jose M, Puigdomenech P. Structure and expression of genes coding for structural proteins of the plant cell wall. New Phytol, 1993, 125: 259–282



[22]许文亮, 黄耿青, 王秀兰, 汪虹, 李学宝. 一类新的编码PRPs基因的分离及其在棉花纤维等组织细胞中的表达. 生物化学与生物物理进展, 2007, 34: 509–517



Xu W L, Hang G Q, Wang X L, Wang H, Li X B. The deprivation and expression in different tissue of cotton fibre cell of a class of genes coding the Proline-rich proteins. Prog Biochem Biophys, 2007, 34: 509–517



[23]Deutch C E. Winicov I. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol Biol, 1995, 27: 411–418



[24]Goodwin W, Pallas J A, Jenlins G I. Transcripts of a gene en-coding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Mol Biol, 1996, 31: 771–781



[25]Györgyey J, Németh K, Magyar Z. Expression of a novel–type small proline–rich protein gene of alfalfa is induced by 2,4-dichlorophenoxiacetic acid in dedifferentiated callus cells. Plant Mol Biol, 1997, 34: 593–602



[26]Jose E P. Cellular localization of the embryo–specific Hybrid PRP from Zea mays, and characterization of promoter regulatory elements of its gene. Plant Mol Biol, 2012, 80: 325–335



[27]Zhang S Q, Mehdy M C. Binding of a 50–kD Protein to a U–Rich Sequence in an mRNA Encoding a proline–rich protein that is destabilized by funga1 elicitor. Plant Cell, 1994, 6: 135–145



[28]Fry S C. Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem J, 1982, 204: 449–455



[29]Sauer N, Corbin D R, Keller B, Lamb C J. Cloning and characterization of a wound–specific hydroxy proline–rich glycoprotein in Phaseolus vulgaris. Plant Cell Environ, 1990, 13: 257–266



[30]Hong J C, Nagao R T, Key J L. Characterization of a proline–rich cell wall protein gene family of soybean. A comparative analysis. J Biol Chem, 1990, 265: 2470–2475



[31]Wu H M, Zou J T, Bruce M, Gu Q, Alice Y C. A tobacco gene family for flower cell wall proteins with a proline–rich domain and a cysteine–rich domain. Proc Natl Acad Sci USA, 1993, 90: 6829–6833



[32]Chen J Y, Zhao J, Ning J, Liu Y, Xu J, Tian S J, Zhang L Y, Sun M X. NtProRP1, a novel proline–rich protein, is an osmotic stress–responsive factor and specifically functions in pollen tube growth and early embryogenesis in Nicotiana tabacum. Plant Cell Environ, 2014, 37: 499–511



[33]Li B C, Zhang C, Chai Q X, Han Y Y, Wang X Y, Liu M X, Feng H, Xu Z Q. Plasmalemma localisation of DOUBLE HYBRID PROLINE–RICH PROTEIN 1 and its function in systemic acquired resistance of Arabidopsis thaliana. Func Plant Biol, 2014, 41: 768–779



[34]Xu W L, Zhang D J, Wu Y F, Qin L X, Huang G Q, Li J, Li L, Li X B. Cotton PRP5 gene encoding a proline–rich protein is involved in fiber development. Plant Mol Biol, 2013, 82: 353–365



[35]Chen J, Varner J E. Isolation and characterization of cDNA clones for carrot extension and a proline–rich 33 kD protein. Proc Natl Acad Sci USA, 1985, 82: 4399–4403



[36]Gothandam K M, Nalini E, Karthikeyan S, Shin J S. OsPRP, a flower specific proline–rich protein of rice, determindes extracelluar matrix structure of floral organs and its overexpression confers cold–tolerance. Plant Mol Biol, 2010, 72: 125–135



[37]Zhan X Q, Wang B S, Li H J, Liu R Y, Rajwant K K, Zhu J K, Viswanathan C. Arabidopsis proline–rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci USA, 2012, 109: 18198–18203



[38]Boron A K, Orden J V, Markakis M N, Mouille G, Adriaensen D, Verbelen J P, Höfte H, Vissenberg K. Proline–rich protein–like PRPL1 controls elongation of root hairs in Arabidopsis thaliana. J Exp Bot, 2014, 65: 5485–5495.

[1] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[2] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[3] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[4] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[5] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[6] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[7] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[8] 向文扬,杨永庆,任秋燕,晋彤彤,王丽群,王大刚,智海剑. 大豆抗SC3候选基因的克隆及分析[J]. 作物学报, 2019, 45(12): 1822-1831.
[9] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[10] 杨文娟,张艳欣,王林海,魏鑫,黎冬华,高媛,刘盼,张秀荣. 一个芝麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2018, 44(7): 1010-1020.
[11] 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828.
[12] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
[13] 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018, 44(01): 53-62.
[14] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
[15] 吴坤,吴文雄,杨敏敏,刘红艳,郝国存,赵应忠. 白芝麻籽粒油脂、蛋白质及芝麻素含量QTL定位分析[J]. 作物学报, 2017, 43(07): 1003-1011.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!