欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (12): 1819-1827.doi: 10.3724/SP.J.1006.2015.01819

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

向日葵病程相关蛋白HaPR1基因的克隆与功能研究

马立功1,2,张匀华2,*,孟庆林2,石凤梅2,刘佳2,李易初2,王志英1,*   

  1. 1东北林业大学林学院,黑龙江哈尔滨,150040;2黑龙江省农业科学院植物保护研究所,黑龙江哈尔滨,150086
  • 收稿日期:2015-04-20 修回日期:2015-07-20 出版日期:2015-12-12 网络出版日期:2015-08-11
  • 通讯作者: 王志英, E-mail: zyw0451@sohu.com, Tel: 13069873855; 张匀华, E-mail: yhzhang9603@126.com, Tel: 13603639603
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-16)和黑龙江省农业科技创新工程项目(QN015)资助。

Cloning and Function Analysis of Pathogenesis Related Protein Gene HaPR1 from Sunflower (Helianthus annuus)

MA Li-Gong1,2,ZHANG Yun-Hua2,*,MENG Qing-Lin2,SHI Feng-Mei2,LIU Jia2,LI Yi-Chu2,WANG Zhi-Ying1,*   

  1. 1 College of Forestry, Northeast Forestry University, Harbin 150040, China; 2 Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
  • Received:2015-04-20 Revised:2015-07-20 Published:2015-12-12 Published online:2015-08-11
  • Contact: 王志英, E-mail: zyw0451@sohu.com, Tel: 13069873855; 张匀华, E-mail: yhzhang9603@126.com, Tel: 13603639603
  • Supported by:

    This research was supported by the Modern Agro-industry Technology Research System (CARS-16) and the Agricultural Science and Technology Innovation Program of Heilongjiang Province (QN015).

摘要:

病程相关蛋白(pathogenesis-related proteins)经常被用作植物抗病反应的分子标记。本文在核盘菌诱导向日葵转录组文库的基础上克隆1个病程相关蛋白1基因HaPR1的cDNA全长序列,并进行了表达模式和功能分析。结果表明, 该基因cDNA全长开放阅读框为489 bp,编码162个氨基酸,分子量为17.52 kD,等电点为8.19,具有6个保守半胱氨酸,4个保守的allergen V5/Tpx-1结构域,GenBank登录号为KR071874。经比较HaPR1与多种物种PR1高度同源。实时荧光定量PCR检测结果表明,HaPR1相对表达量在向日葵叶中最高,根中其次,茎中最低。干旱、盐、草酸、核盘菌及其代谢物均可显著诱导其表达。利用农杆菌介导法将该基因导入烟草,提高了转基因株系对核盘菌的抗性。对抗性株系烟草防御酶活性及丙二醛含量测定发现转基因烟草叶片在核盘菌胁迫下显著提高了SOD、POD和CAT活性,降低了MDA含量。初步推断HaPR1具有抗核盘菌的功能。

关键词: 向日葵, 病程相关蛋白1, 基因克隆, 功能分析

Abstract:

Pathogenesis-related proteins are commonly used as markers of plant defense responses. The full-length cDNA of pathogenesis-related protein 1 (PR1) named HaPR1 in Helianthus annuus was cloned based on the transcriptome of H.annuus induced by Sclerotinia sclerotiorum, and its expression model and function were analyzed in this study. Sequence analysis showed that the cDNA of HaPR1 (GenBank No. KR071874) contained a 489 bp ORF encoding a protein of 162 amino acids residues with the molecular mass of 17.52 kD and theoretical pI of 8.19, HaPR1 possessed six conserved cysteine and four conserved allergen V5/Tpx-1 related domain. The HaPR1 was highly homologous with PR1 in other species. Real-time PCR analysis showed that expression level of HaPR1 was the highest in leaf, and was significantly induced by drought, salt stress, oxalic acid, S. sclerotiorum and its metabolites. Then the HaPR1 gene was transformed into tobacco by Agrobacterium tumefaciens to further verify its function. The results showed that the expression of HaPR1 improved the resistance of transgenic lines, and significantly increased SOD, POD, and CAT activities and reduced the content of MDA. It suggested that HaPR1 has a function of resistance to S. sclerotiorum.

Key words: Helianthus annuus, Pathogenesis-related protein 1, Gene clone, Function analysis

[1]谢纯政, 刘海燕, 李玲, 梁炫强. 植物病程相关蛋白PR10研究进展. 分子植物育种, 2008, 6: 949–953



   Xie C Z, Liu H Y, Li L, Liang X Q. Advances on class 10 pathogenesis-related proteins. Mol Plant Breed, 2008, 6: 949–953 (in Chinese with English abstract)



[2]Loon L C, Strien E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol, 1999, 55: 85–97



[3]Van Loon L C, Rep M, Pieterse C M J. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol, 2006, 44: 135–162



[4]牛吉山, 刘瑞, 郑磊. 小麦PR-1、PR-2、PR-5基因的白粉菌和水杨酸诱导表达分析及白粉病抗性研究. 麦类作物学报, 2007, 27: 1132–1137



    Niu J S, Liu R, Zheng L. Expression analysis of wheat PR-1, PR-2, PR-5 activated by Bgt and SA, and powdery mildew resistance. J Triticeae Crops, 2007, 27: 1132–1137 (in Chinese with English abstract)



[5]Xie X Z, Xue Y J, Zhou J J, Zhang B, Chang H, Takano M. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant, 2011, 4: 688–696



[6]Nandi A, Kachroo P, Fukushige H, Hildebrand D F, Klessig D F, ShahJ. Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Mol Plant Microbe Interact, 2003, 16: 588–599



[7]Flors V, Ton J, van Doorn R, Jakab G, García-Agustín P, Mauch-Mani B. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J, 2008, 54: 81–92



[8]Alexander D, Goodman R M, GutRella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahlgoy P, Luntz T, Ward E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci USA, 1993, 90: 7327–7331



[9]NiKi T, Mitsuhara I, Seo S. Antagonistic effect of Salicylic 330 acid and jasmonic acid on the expression of pathogeneis-relation (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol, 1998, 39: 500–507



[10]Sarowar S, Kim Y J, Kim E N. Overexpression of a pepper basic pathogenesis-related protein1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep, 2005, 24: 216–224



[11]Li Z T, Dhekney S A, Gray D J. PR-1 gene family of grapevine: a uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high level resistance to bacterial disease in transgenic tobacco. Plant Cell Rep, 2011, 30: 1–11



[12]Bonasera J M, Kim J F, Beer S V. PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biol, 2006, 6: 23



[13]Seo P J, Lee A K, Xiang F N, Park C M. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant Cell Physiol, 2008, 49, 334–344



[14]Stintzi A, Heitz T, Kauffmann S, Legrand M, Fritig B. Identification of a basic pathogenesis-related, thaumatin-like protein of virus-infected tobacco as osmotin. Physiol Mol Plant Pathol, 1991, 38: 137–146



[15]Agrawal G K, Jwa N S, Rakwal R. A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun, 2000, 274: 157–165



[16]Agrawal G K, Rakwal R, Jwa N S. Rice (Oryza sativa L.) OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochem Biophys Res Commun, 2000, 278: 290–298



[17]Agrawal G K, Rakwal R, Jwa N S, Agrawal V P. Signaling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: a model illustrating components participating during defence/stress response. Plant Physiol Biochem, 2001, 39: 1095–1103



[18]Livak K, Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-delta delta CT method. Methods, 2001, 25: 402–408



[19]邹琦. 植物生理生化实验指导. 北京: 农业出版社, 1991



    Zou Q. Plant Physiological and Biochemical Experiments. Beijing: Agriculture Press, 1991 (in Chinese)



[20]朱广廉, 钟文海, 张爱琴. 植物生理实验. 北京: 北京大学出版社, 1991



    Zhu G L, Zhong W H, Zhang A Q. Plant Physiology Experiment. Beijing: Peking University Press, 1991 (in Chinese)



[21]汤章城, 王国强, 史益敏. 现代植物生理学实验指南. 北京: 科学出版社, 1999



    Tang Z C, Wang G Q, Shi Y M. Modern Experiment Guide for Plant Physiology. Beijing: Science Press, 1999 (in Chinese)



[22]陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2002. pp 31–32, 117–120



    Chen J X, Wang X F. Experiment Manual for Plant Physiology. Guangzhou: South China University of Technology Press, 2002. pp 31–32, 117–120 (in Chinese)



[23]Kim S T, Yu S, Kang Y H. The rice pathogen-related protein 10 (Jiospr10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep, 2008, 27: 593–603



[24]张计育, 渠慎春, 薛华柏, 高志红, 郭忠仁, 章镇. 湖北海棠病程相关蛋白MhPR8基因的克隆与表达. 中国农业科学, 2012, 45: 1568–1575



    Zhang J Y, Qu S C, Xue H B, Gao Z H, Guo Z R, Zhang Z. Isolation and expression of pathogenesis-related protein gene MhPR8 from Malus hupehensis. Sci Agric Sin, 2012, 45: 1568–1575 (in Chinese with English abstract)



[25]栗小英, 高琳, 张艳俊, 王海燕, 刘大群. 叶锈菌及信号分子诱导小麦TcLr35中β-1,3-葡聚糖酶基因的表达分析. 中国农业科学, 2014, 47: 2774–2783



    Li X Y, Gao L, Zhang Y J, Wang H Y, Liu D Q. Expression and analysis of β-1,3-glucanase gene in wheat TcLr35 induced by wheat leaf rust pathogen and signal molecule. Sci Agri Sin, 2014, 47: 2774–2783 (in Chinese with English abstract)



[26]侯丽霞, 高超, 车永梅, 赵方贵, 刘新. 葡萄病程相关蛋白1基因的克隆和表达分析. 植物生理学报, 2012, 48: 57–62



    Hou L X, Gao C, Che Y M. Gene cloning and expression analysis of pathogenesis-related protein 1 in Vitis vinifera L. Plant Physiol J, 2012, 48: 57–62 (in Chinese with English abstract)



[27]王艳, 陈西, 周莲洁, 杨中敏. 费尔干猪毛菜病程相关蛋白基因SfPR-1的表达规律和植物表达载体构建. 生物技术通报, 2014, 1: 117–124



    Wang Y, Chen X, Zhou L J, Yang Z M. Expression profiles of pathogen-related protein gene (SfPR-1) from Salsola ferganica and construction of plant expression vectors. Biotechnol Bull, 2014, 1: 117–124 (in Chinese with English abstract)

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[4] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[5] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[6] 杨阳, 李淮琳, 胡利民, 范楚川, 周永明. 白菜型油菜srb多室性状的遗传分析与分子鉴定[J]. 作物学报, 2021, 47(3): 385-393.
[7] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[8] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[9] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[10] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[11] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[12] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[13] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[14] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[15] 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!