欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1841-1850.doi: 10.3724/SP.J.1006.2019.94049

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

藜麦GRF转录因子家族的鉴定及表达分析

时丕彪1,何冰2,费月跃1,王军1,王伟义1,魏福友1,吕远大2,顾闽峰1,*()   

  1. 1 盐城市新洋农业试验站, 江苏盐城 224049
    2 江苏省农业科学院种质资源与生物技术研究所, 江苏南京 210014
  • 收稿日期:2019-03-22 接受日期:2019-06-22 出版日期:2019-12-12 网络出版日期:2019-07-13
  • 通讯作者: 顾闽峰
  • 作者简介:时丕彪, E-mail: 1032175660@qq.com
  • 基金资助:
    本研究由江苏现代农业(蔬菜)产业技术体系(盐城)推广示范基地项目(JATS(2018)137);江苏省农业科学院探索性颠覆性创新计划项目(ZX(17)2015)

Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa

Pi-Biao SHI1,Bing HE2,Yue-Yue FEI1,Jun WANG1,Wei-Yi WANG1,Fu-You WEI1,Yuan-Da LYU2,Min-Feng GU1,*()   

  1. 1 Xinyang Agricultural Experiment Station of Yancheng City, Yancheng 224049, Jiangsu, China
    2 Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2019-03-22 Accepted:2019-06-22 Published:2019-12-12 Published online:2019-07-13
  • Contact: Min-Feng GU
  • Supported by:
    This study was supported by the Promotion Demonstration Base Program (Yancheng) of Jiangsu Modern Agriculture (Vegetable) Industry Technology System(JATS(2018)137);Exploratory and Disruptive Innovation Program of Jiangsu Academy of Agricultural Sciences(ZX(17)2015)

摘要:

生长调控因子(growth-regulating factor, GRF)是植物特有的一类转录因子, 对植物的生长发育起重要的调控作用。藜麦是一种单体植物即可满足人体基本营养需求的食物, 也是未来最具潜力的农作物之一。但是关于藜麦GRF基因家族的研究至今尚缺乏报道。因此, 本研究利用生物信息学方法, 对藜麦GRF基因进行全基因组鉴定, 并对其理化性质、基因结构、保守结构域、系统发育关系及组织表达进行分析。结果表明, 藜麦中共有18个GRF转录因子, 蛋白长度77~621 aa, 分子量8.81~67.38 kD, 等电点5.23~9.37; 每个成员含有1~4个内含子及2~5个外显子, 这些GRF蛋白都具有由31~35个氨基酸组成的QLQ保守结构域或由25~43个氨基酸组成的WRC保守结构域。系统进化分析表明, 藜麦与拟南芥的GRF转录因子亲缘关系比水稻更近。表达图谱显示, 藜麦GRF基因具有明显的组织表达特异性, 总体在种子中的表达量较高, 其次是在花序和根中, 在其他组织中的表达量相对较低。

关键词: 藜麦, GRF转录因子, 进化分析, 表达分析

Abstract:

Growth-regulating factors (GRFs) are plant-specific proteins which play an important role in regulating plant growth and development. Quinoa is one of the plant sources that can meet human daily nutritional needs and is also considered as one of the most promising crops in the future. However, no systematical study about GRF gene family has been performed in quinoa to date. In this study, the GRFs in the whole genome of quinoa were identified by bioinformatics method, and their physicochemical properties, gene structure, conserved domain, phylogenetic relationship and tissue expression were analyzed. There were 18 GRF transcription factors in quinoa, with the protein length from 77 to 621 aa, the molecular weight from 8.81 to 67.38 kD and the isoelectric point from 5.23 to 9.37. Each member contained 1-4 introns and 2-5 exons. And all 18 GRF proteins possessed highly conserved QLQ domain composed of 31-35 aa or WRC domain composed of 25-43 aa. Phylogenetic analysis showed that the GRF transcription factors were more closely related between quinoa and Arabidopsis than between quinoa and rice. The expression level of GRFs was higher in seed, moderate in inflorescence and root, and relatively lower in other tissues, showing obvious tissue expression specificity.

Key words: Chenopodium quinoa, GRF transcription factor, phylogenetic analysis, expression analysis

表1

定量PCR引物序列"

基因 Gene 正向引物 Forward primer (5°-3°) 反向引物 Reverse primer (5°-3°)
EF1a GTACGCATGGGTGCTTGACAAACTC ATCAGCCTGGGAGGTACCAGTAAT
AUR62001481 TCCCACCTGAACTCTTCTCTGCT ACATCTTCCTGGCTCTGGGTCT
AUR62002094 GGAGGCATGGTCGGGTTTGG GGGATCGTGGACTGGCTGAG
AUR62009885 CCCTTTCACAGCAAGTCAATGGC AGAGAAGAGTCCAGAAGAAGAGGAAGT
AUR62028212 TGCGCCAAAGAAGCCTACCC GACGACACAGAAGCCGTCGT
AUR62033894 TAGTGGTGCCTGGTGGTGGT GCCTTGCATTCCCTGACTGCT
AUR62043106 ACCGGGAAACCCAACATCGG CCCACCGGCACTCCAATTCA

表2

藜麦GRF基因家族成员基本信息"

基因名称
Gene name
Scaffold位置及基因方向
Scaffold location and gene direction (bp)
蛋白长度
Length (aa)
分子量
MW (kDa)
等电点
pI
AUR62001481 C_Quinoa_2716: 5162638-5164244 (+) 248 28.17 9.15
AUR62002094 C_Quinoa_4480: 2028959-2032889 (-) 331 36.64 8.84
AUR62004030 C_Quinoa_2370: 7633423-7637087 (-) 570 61.48 8.25
AUR62004236 C_Quinoa_4250: 1136571-1139467 (+) 362 40.73 9.32
AUR62006018 C_Quinoa_1001: 1290301-1292042 (-) 273 29.95 5.23
AUR62007068 C_Quinoa_1971: 832455-834729 (+) 369 39.86 8.41
AUR62007538 C_Quinoa_2646: 201458-205187 (-) 621 67.38 8.00
AUR62009885 C_Quinoa_2493: 4358019-4358318 (-) 77 8.81 9.18
AUR62013612 C_Quinoa_1412: 163344-166379 (-) 374 41.77 9.37
基因名称
Gene name
Scaffold位置及基因方向
Scaffold location and gene direction (bp)
蛋白长度
Length (aa)
分子量
MW (kD)
等电点
pI
AUR62019933 C_Quinoa_1480: 2623570-2625376 (+) 287 30.90 6.25
AUR62024537 C_Quinoa_2876: 5196136-5201404 (+) 541 58.33 9.11
AUR62025191 C_Quinoa_4329: 621270-623166 (-) 302 33.61 6.59
AUR62028212 C_Quinoa_2933: 1647993-1651942 (-) 325 36.02 8.69
AUR62028983 C_Quinoa_2412: 1335673-1337123 (+) 309 34.31 6.45
AUR62033547 C_Quinoa_1776: 1206319-1208711 (-) 268 28.79 7.79
AUR62033894 C_Quinoa_2654: 4420101-4424297 (+) 532 57.33 8.97
AUR62035608 C_Quinoa_2193: 618326-619612 (+) 283 30.81 5.43
AUR62043106 C_Quinoa_1071: 168739-171090 (-) 270 29.22 6.75

图1

藜麦、拟南芥和水稻GRF基因家族系统进化树"

图2

藜麦GRF基因家族进化树与基因结构"

图3

藜麦GRF蛋白保守结构域分析"

图4

藜麦GRF蛋白QLQ (A)和WRC (B)结构域的氨基酸序列比对"

图5

GRF基因在藜麦不同组织中的表达模式分析"

图6

6个GRF基因在藜麦不同组织的表达"

[1] Schwechheimer C, Bevan M W . The regulation of transcription factor activity in plants. Trends Plant Sci, 1998,3:378-383.
doi: 10.1016/S1360-1385(98)01302-8
[2] Chen Y, Cao J . Comparative analysis of Dof transcription factor family in maize. Plant Mol Biol Rep, 2015,33:1245-1258.
doi: 10.1007/s11105-014-0835-9
[3] Kim J H, Tsukaya H . Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF- INTERACTING FACTOR duo. J Exp Bot, 2015,66:6093-6107.
doi: 10.1093/jxb/erv349
[4] Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G . PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 2017,45:1040-1045.
[5] Wang F D, Qiu N W, Ding Q, Li J J, Zhang Y H, Li H Y, Gao J W . Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics, 2014,15:807. doi: 10.1186/1471- 2164-15-807.
doi: 10.1186/1471-2164-15-807
[6] Debernardi J M, Mecchia M A, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez R E, Palatnik J F . Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J, 2014,79:413-426.
doi: 10.1111/tpj.12567
[7] Omidbakhshfard M A, Proost S, Fujikura U, Mueller-Roeber B . Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant, 2015,8:998-1010.
doi: 10.1016/j.molp.2015.01.013
[8] Kim J H, Choi D, Kende H . The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J, 2003,36:94-104.
doi: 10.1046/j.1365-313X.2003.01862.x
[9] Rodriguez R E, Ercoli M F, Debernardi J M, Breakfield N W, Mecchia M A, Sabatini M, Cools T, De Veylder L, Benfey P N, Palatnik J F . MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell, 2015,27:3354-3366.
doi: 10.1105/tpc.15.00452
[10] Kim J H, Kende H . A transcriptional coactivator, AtGIF1, is involved in regulated leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA, 2004,101:13374-13379.
doi: 10.1073/pnas.0405450101
[11] van der Knaap E, Kim J H, Kende H . A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol, 2000,122:695-704.
doi: 10.1104/pp.122.3.695
[12] Cao Y P, Han Y H, Jin Q, Lin Y, Cai Y P . Comparative genomic analysis of the GRF genes in Chinese pear (Pyrus bretschneideri Rehd), poplar (Populous), grape (Vitis vinifera), Arabidopsis and rice (Oryza sativa) Front Plant Sci 2016,7:1750. doi: 10.3389/fpls.2016.01750.
[13] Choi D, Kim J H, Kende H . Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice(Oryza sativa L.). Plant Cell Physiol, 2004,45:897-904.
doi: 10.1093/pcp/pch098
[14] Rodriguez R E, Mecchia M A, Debernardi J M, Schommer C, Weigel D, Palatnik J F . Control of cell proliferation in Aarabidopsis thaliana by microRNA miR396. Development, 2010,137:103-112.
doi: 10.1242/dev.043067
[15] Horiguchi G, Kim G T, Tsukaya H . The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J, 2005,43:68-78.
doi: 10.1111/tpj.2005.43.issue-1
[16] Kim J H, Lee B H . GROWTH-REGULATING FACTOR4 of Arabidopsis thaliana is required for development of leaves, cotyledons, and shoot apical meristem. J Plant Biol, 2006,49:463-468.
doi: 10.1007/BF03031127
[17] Liu D M, Song Y, Chen Z X, Yu D Q . Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant, 2009,136:223-236.
doi: 10.1111/ppl.2009.136.issue-2
[18] Ercoli M F, Rojas A M, Debernardi J M, Palatnik J F, Rodriguez R E . Control of cell proliferation and elongation by miR396. Plant Signal Behav, 2016,11:e1184809
doi: 10.1080/15592324.2016.1184809
[19] Lee B H, Jeon J O, Lee M M, Kim J H . Genetic interaction between GROWTH-REGULATING FACTOR and CUP-SHAPED COTYLEDON in organ separation. Plant Signal Behav, 2015,10:e988071
doi: 10.4161/15592324.2014.988071
[20] Yang F, Liang G, Liu D, Yu D Q . Arabidopsis miR396 mediates the development of leaves and flowers in transgenic tobacco. J Plant Biol, 2009,52:475-481.
doi: 10.1007/s12374-009-9061-7
[21] Liang G, He H, Li Y, Wang F, Yu D Q . Molecular mechanism of miR396 mediating pistil development in Arabidopsis. Plant Physiol, 2014,164:249-258.
doi: 10.1104/pp.113.225144
[22] Baucher M, Moussawi J, Vandeputte O M, Monteyne D, Mol A, Pérez-Morga D, Jaziri M E I . A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco. Plant Biol, 2013,15:892-898.
doi: 10.1111/plb.2013.15.issue-5
[23] Wynn A N, Rueschhoff E E, Franks R G . Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana. PLoS One, 2011,6:e26231
doi: 10.1371/journal.pone.0026231
[24] Liu J, Hua W, Yang H L, Zhan G M, Li R J, Deng L B, Wang X F, Liu G H, Wang H Z . The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot, 2012,63:3727-3740.
doi: 10.1093/jxb/ers066
[25] Lee B H, Ko J H, Lee S, Lee Y, Pak J H, Kim J H . The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties. Plant Physiol, 2009,151:655-668.
doi: 10.1104/pp.109.141838
[26] Lee B H, Kim J H . Spatio-temporal distribution patterns of GRF-INTERACTING FACTOR expression and leaf size control. Plant Signal Behav, 2014,9:1-4.
[27] Vercruyssen L, Verkest A, Gonzalez N, Heyndrickx K S, Eeckhout D, Han S K, Jégu T, Archacki R, Leene J V, Andriankaja M, De Bodt S, Abeel T, Coppens F, Dhondt S, De Milde L, Vermeersch M, Maleux K, Gevaert K, Jerzmanowski A, Benhamed M, Wagner D, Vandepoele K, De Jaeger G, Inzé D . ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. Plant Cell, 2014,26:210-229.
doi: 10.1105/tpc.113.115907
[28] Wu L, Zhang D F, Xue M, Qian J J, He Y, Wang S C . Overexpression of the maize GRF10, an endogenous truncated GROWTH- REGULATING FACTOR protein, leads to reduction in leaf size and plant height. J Integr Plant Biol, 2014,56:1053-1063.
doi: 10.1111/jipb.12220
[29] Nelissen H, Eeckhout D, Demuynck K, Persiau G, Walton A, van Bel M, Vervoort M, Candaele J, De Block J, Aesaert S, Van Lijsebettens M, Goormachtig S, Vandepoele K, Van Leene J, Muszynski M, Gevaert K, Inzé D, De Jaeger G, . Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant Cell, 2015,27:1605-1619.
doi: 10.1105/tpc.15.00269
[30] Wu L, Zhang D F, Xue M, Qian J J, He Y, Wang S C . Overexpression of the maize GRF10, an endogenous truncated GROWTH-REGULATING FACTOR protein, leads to reduction in leaf size and plant height. J Integr Plant Biol, 2014,56:1053-1063.
doi: 10.1111/jipb.12220
[31] Omidbakhshfard M A, Fujikura U, Olas J J, Xue G P, Balazadeh S, Mueller-Roeber B . GROWTH-REGULATING FACTOR 9 negatively regulates Arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. PLoS Genet, 2018,14:e1007484.
doi: 10.1371/journal.pgen.1007484
[32] Ng S C, Anderson A, Coker J, Ondrus M . Characterization of lipid oxidation products in quinoa (Chenopodium quinoa). Food Chem, 2006,101:185-192.
doi: 10.1016/j.foodchem.2006.01.016
[33] Ogungbenle H N . Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int J Food Sci Nutr, 2009,54:153-158.
doi: 10.1080/0963748031000084106
[34] Razzaghi F, Ahmadi S H, Adolf V I, Jensen C R, Jacobsen S E, Andersen M N . Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci, 2011,197:348-360.
doi: 10.1111/j.1439-037X.2011.00473.x
[35] Jacobsen S E, Monteros C, Christiansen J L, Bravo L A, Corcuera L J, Mujica A . Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron, 2005,22:131-139.
doi: 10.1016/j.eja.2004.01.003
[36] Hariadi Y, Marandon K, Tian Y, Jacobsen S E, Shabala S . Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot, 2011,62:185-193.
doi: 10.1093/jxb/erq257
[37] Jarvis D E, Ho Y S, Lightfoot D J, Schmockel S M, Li B, Borm T J A, Ohyanagi H, Mineta K, Michell C T, Saber N, Kharbatia N M, Rupper R R, Sharp A R, Dally N, Boughton B A, Woo Y H, Gao G, Schijlen E G W M, Guo X J, Momin A A, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold S T, Gojobori T, van der Linden C G, van Loo E N, Jellen E N, Maughan P J, Tester M . The genome of Chenopodium quinoa. Nature, 2017,542:307-312.
doi: 10.1038/nature21370
[38] Liu J X, Wang R M, Liu W Y, Zhang H L, Guo Y D, Wen R Y . Genome-wide characterization of heat-shock protein 70S from Chenopodium quinoa and expression analyses of Cqhsp70s in response to drought stress. Genes, 2018,9:35. doi: 10.3390/ genes9020035.
doi: 10.3390/genes9020035
[39] Zhang D F, Li B, Jia G Q, Zhang T F, Dai J R, Li J S, Wang S C . Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in maize (Zea mays L.). Plant Sci, 2008,175:809-817.
doi: 10.1016/j.plantsci.2008.08.002
[40] Khatun K, Robin A H K, Park J I, Nath U K, Kim C K, Lim K B, Nou I S, Chung M Y . Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones. Int J Mol Sci, 2017,18:1056. doi: 10.3390/ijms18051056.
doi: 10.3390/ijms18051056
[41] Noon J B, Hewezi T, Baum T J . Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. J Exp Bot, 2019,70:1653-1668.
doi: 10.1093/jxb/erz022
[42] Vercruyssen L, Tognetti V B, Gonzalez N, Van Dingenen J, De Milde L, Bielach A, De Rycke R, Van Breusegem F, Inzé D . GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity. Plant Physiol, 2015,167:817-832.
doi: 10.1104/pp.114.256180
[43] Kim J S, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, Mitsuda N, Takiguchi Y, Ohme-Takagi M, Kondou Y, Yoshizumi T, Matsui M, Shinozaki K, Yamaguchi-Shinozaki K . Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell, 2012,24:3393-3405.
doi: 10.1105/tpc.112.100933
[44] Chandran V, Wang H, Gao F, Cao X L, Chen Y P, Li G B, Zhu Y, Yang X M, Zhang L L, Zhao Z X, Zhao J H, Wang Y G, Li S, Fan J, Li Y, Zhao J Q, Li S Q, Wang W M . miR396-OsGRFs module balances growth and rice blast disease-resistance. Front Plant Sci, 2019,14:1999. doi: 10.3389/fpls.2018.01999.
[45] Sun P Y, Zhang W H, Wang Y H, He Q, Shu F, Liu H, Wang J, Wang J M, Yuan L P, Deng H F . OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016,58:836-847.
doi: 10.1111/jipb.12473
[46] Li S C, Gao F Y, Xie K L, Zeng X H, Cao Y, Zeng J, He Z S, Ren Y, Li W B, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P . The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 2016,14:2134-2146.
doi: 10.1111/pbi.2016.14.issue-11
[47] Panchy N, Lehti-Shiu M, Shiu S H . Evolution of gene duplication in plants. Plant Physiol, 2016,171:2294-2316.
[48] Yang C Y, Huang Y H, Lin C P, Lin Y Y, Hsu H C, Wang C N, Liu L Y, Shen B N, Lin S S . MicroRNA396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptoms1 effector. Plant Physiol, 2015,168:1702-1716.
doi: 10.1104/pp.15.00307
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[5] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[6] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[7] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[8] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[9] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[10] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[11] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[12] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[13] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[14] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
[15] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!