欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1851-1858.doi: 10.3724/SP.J.1006.2019.94035

• 耕作栽培·生理生化 • 上一篇    下一篇

不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应

鱼海跃,闫岩,张钰石,张明才(),李召虎   

  1. 植物生长调节剂教育部工程研究中心 / 中国农业大学农学院, 北京100193
  • 收稿日期:2019-03-05 接受日期:2019-06-12 出版日期:2019-12-12 网络出版日期:2019-07-08
  • 通讯作者: 张明才
  • 作者简介:鱼海跃, E-mail: yuhaiyueo@126.com
  • 基金资助:
    本研究由国家自然科学基金项目(31471420)

Regulatory effects of coronatine on photosynthetic characteristics and yield of soybean under different irrigation conditions

Hai-Yue YU,Yan YAN,Yu-Shi ZHANG,Ming-Cai ZHANG(),Zhao-Hu LI   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100093, China
  • Received:2019-03-05 Accepted:2019-06-12 Published:2019-12-12 Published online:2019-07-08
  • Contact: Ming-Cai ZHANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31471420)

摘要:

干旱是限制大豆丰产稳产的重要因素之一, 利用生物调节剂提高大豆耐旱性是生产中一种新型的生物节水管理模式。本研究在常规灌溉与无灌溉条件下, 采用生物调节剂冠菌素(COR)于大豆初花期进行叶面喷施处理, 研究COR对植株农艺性状、叶片水势和光合特征、产量及其构成因素的调控效应。试验结果表明: 在正常灌溉条件下, COR处理对大豆叶片水势、叶绿素含量、光合速率、叶绿素荧光参数、RuBP羧化酶和SPS活性等影响较小, 与对照相比其产量和生物量差异不显著。但在生长季无灌溉的雨养条件下, COR处理会显著提高大豆开花后叶片水势、叶绿素含量、光合速率和叶绿素荧光参数, 增加叶片RuBP羧化酶和SPS活性, 改善大豆产量构成因素, 最终导致籽粒产量增加。总之, 在雨养条件下, COR对大豆光合特征和产量形成具有积极的调控效应。

关键词: 冠菌素, 灌溉, 大豆, 光合特性, 产量

Abstract:

Drought is one of the important factors limiting the high and stable yield of soybean, and an important problem restricting the sustainable production of soybean in China. Using biological regulators to improve the drought tolerance of soybean in production is a new feasible biological water-saving mode. In this study, the field experiments were conducted to investigate the effects of coronatine (COR) on leaf water potential, photosynthetic characteristics, plant traits, yield and its components of soybean under conventional irrigation and no irrigation conditions from 2015 to 2016. Under conventional irrigation conditions, COR could not change the values of leaf water potential, chlorophyll content, photosynthetic rate, chlorophyll fluorescence parameters, and activities of RuBP carboxylase and SPS in soybean leaves compared to control. And there was no significant difference in yield and biomass between COR treatment and control. However, under no irrigation conditions, COR significantly increased the leaf water potential, chlorophyll content, photosynthetic rate and chlorophyll fluorescence parameters, as well as the activities of RuBP carboxylase and SPS of soybean leaves, thus improved the yield and yield components. These results suggest that COR has a positive regulatory effect on photosynthetic characteristics and yield formation of soybean under no irrigation conditions, and can be used as a new technical means for cultivation preventing drought resistance in soybean production.

Key words: coronatine, irrigation, soybean, photosynthetic characteristics, yield

图1

2015年、2016年和25年夏大豆生长季吴桥月平均降雨量(柱)和平均气温(线)"

表1

不同田间灌溉条件下COR对大豆产量及其构成因素的影响"

年度
Year
灌溉
Irrigation
处理
Treatment
株荚数
Pods per plant
株粒数
Grains per plant
百粒重
100-grain weight (g)
产量
Yield (kg hm-2)
2016 正常灌溉
Conventional irrigation
CK 35.6 a 73.6 a 22.4 a 3216 a
COR 36.2 a 74.2 a 22.6 a 3283 a
不灌溉
Non-irrigation
CK 27.6 c 55.4 c 17.2 c 2016 c
COR 29.8 b 60.1 b 18.6 b 2185 b
2015 正常灌溉
Conventional irrigation
CK 33.9 a 63.4 a 21.8 a 3012 a
COR 34.2 a 65.1 a 22.1 a 3078 a
不灌溉
Non- irrigation
CK 25.7 c 43.2 c 17.1 c 1548 c
COR 27.6 b 50.3 b 18.4 b 1877 b

表2

不同田间灌溉条件下COR对大豆植株农艺性状与生物量的影响"

年度
Year
灌溉
Irrigation
处理
Treatment
单株分枝数
Branches per plant
株高
Height (cm)
单株节数
Nodes
单株生物量
Biomass (g)
2016 正常灌溉
Conventional irrigation
CK 2.1 a 81.3 a 16.1 a 33.8 a
COR 2.2 a 80.6 a 16.4 a 34.0 a
不灌溉
Non-irrigation
CK 1.1 b 70.6 c 15.1 b 27.3 c
COR 1.2 b 75.9 b 15.2 b 28.7 b
2015 正常灌溉
Conventional irrigation
CK 1.8 a 76.5 a 15.1 a 31.2 b
COR 1.7 a 73.8 a 14.9 a 32.1 a
不灌溉
Non- irrigation
CK 0.7 b 60.4 c 13.8 b 24.1 c
COR 0.9 b 67.3 b 14.0 b 26.2 b

图2

不同田间灌溉条件下COR对大豆叶片叶绿素含量和光合速率的影响 A和B分别表示2015年和2016年生长季大豆叶片叶绿素含量; C和D分别表示2015年和2016年生长季大豆叶片光合速率。"

图3

不同田间灌溉条件下COR对大豆叶片荧光参数的影响 A和B分别表示2015年和2016年生长季大豆叶片PSII最大量子产量(Fv/Fm); C和D分别表示2015年和2016年生长季大豆叶片PSII实际量子产量(Yield)。"

图4

不同田间灌溉条件下COR对叶片RuBP羧化酶活性的影响 A和B分别表示2015年和2016年生长季大豆叶片RuBP羧化酶活性的影响。"

图5

不同田间灌溉条件下COR对叶片蔗糖磷酸合成酶活性的影响 A和B分别表示2015年和2016年生长季大豆叶片SPS蔗糖磷酸化合成酶活性的影响。"

图6

不同田间灌溉条件下COR对叶片水势的影响 A和B分别表示2015年和2016年生长季大豆叶片水势的影响。"

[1] Manavalan L P, Guttikonda S K, Tran L P, Nguyen H T . Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol, 2009,50:1260-1276.
doi: 10.1093/pcp/pcp082
[2] Anjum S A, Wang L, Farooq M, Khan I, Xue L . Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J Agron Crop Sci, 2011,197:296-301.
doi: 10.1111/j.1439-037X.2011.00468.x
[3] Zhang M C, Duan L S, Tian X L, Wang B, Li Z . Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J Plant Physiol, 2007,164:709-717.
doi: 10.1016/j.jplph.2006.04.008
[4] Zhang M C, Zhai Z X, Tian X L, Duan L S, Li Z H . Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul, 2008,56:257-264.
doi: 10.1007/s10725-008-9305-4
[5] Ai L, Li Z H, Xie Z X, Tian X L, Eneji A E, Duan L S . Coronatine alleviates polyethylene glycol-induced water stress in two rice (Oryza sativa L.) cultivars. J Agron Crop Sci, 2008,194:360-368.
doi: 10.1111/jac.2008.194.issue-5
[6] Zhou Y Y, Zhang M C, Li J M, Li Z H, Tian X L, Duan L S . Phytotoxin coronatine enhances heat tolerance via maintaining photosynthetic performance in wheat based on Electrophoresis and TOF-MS analysis. Sci Rep, 2015,5:1-13.
[7] Wang B M, Li Z H, Eneji A E, Tian X L, Zhai Z X, Li J M, Duan L S . Effects of coronatine on growth, gas exchange traits, chlorophyll content, antioxidant enzymes and lipid peroxidation in maize (Zea mays L.) seedlings under simulated drought stress. Plant Prod Sci, 2008,11:283-290.
doi: 10.1626/pps.11.283
[8] Xie Z X, Duan L S, Tian X L, Wang B M, Eneji A E, Li Z H . Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical scavenging activity. J Plant Physiol, 2008,165:375-384.
doi: 10.1016/j.jplph.2007.06.001
[9] Wu H L, Wu X L, Li Z H, Duan L S, Zhang M C . Physiological evaluation of drought stress tolerance and recovery in Cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. J Plant Growth Regul, 2012,31:113-123.
doi: 10.1007/s00344-011-9224-x
[10] Hao L, Wang Y Q, Zhang J C, Xie Y, Zhang M C, Duan L S, Li Z H . Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean. Plant Sci, 2013,210:1-9.
doi: 10.1016/j.plantsci.2013.05.006
[11] 王玉琼 . 冠菌素提高大豆抗旱性的生理机制研究. 中国农业大学硕士学位论文, 北京, 2015.
Wang Y Q . Physiological Mechanism on the Coronatine Improved Drought Tolerance in Soybean. Master’s Degree Thesis of China Agricultural University, Beijing, China, 2015.
[12] 郑伟, 谢甫绨, 郭泰, 王志新, 李灿东, 张振宇, 吴秀红, 张茂明, 王庆胜 . 密度对不同类型大豆叶部性状的影响. 中国油料作物学报, 2014,36:66-70.
doi: 10.7505/j.issn.1007-9084.2014.01.010
Zheng W, Xie F T, Guo T, Wang Z X, Li C D, Zhang Z Y, Wu X H, Zhang M M, Wang Q S . Effect of density for different types of leaf traits on soybean. Chin J Oil Crop Sci, 2014,36:66-70 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2014.01.010
[13] 顾万荣, 李召虎, 翟志席, 段留生, 张明才 . DCPTA和DTA-6对大豆叶片光合及叶绿素荧光特性的调控. 大豆科学, 2008,27:777-782.
Gu W R, Li Z H, Zhai Z X, Duan L S, Zhang M C . Regulation of DCPTA and DTA-6 on photosynthesis and chlorophyll fluorescence parameters of soybean leaves. Soybean Sci, 2008,27:777-782 (in Chinese with English abstract).
[14] Huber S C . Role of sucrose phosphate synthetase in partition of carbon in levels. Plant Physiol, 1983,71:818-821.
doi: 10.1104/pp.71.4.818
[15] Cooper R L, Fausey N R, Streeter J G . Yield potential of soybean grown under a subirrigation/drainage water management system. Agron J, 1991,83:884-887.
doi: 10.2134/agronj1991.00021962008300050021x
[16] 霍建玲, 邢雪莹, 杨雪, 杨艳玲, 周静文, 魏彬, 喻金秋, 王昕奕, 柏锡 . 干旱对黑龙江省大豆品种农艺性状的影响. 分子植物育种, 2018,16:1668-1676.
Huo J L, Xing X Y, Yang X, Yang Y L, Zhou J W, Wei B, Yu J Q, Wang X Y, Bai X . Effects of drought stress on agronomic traits of soybean cultivars from Heilongjiang province. Mol Plant Breed, 2018,16:1668-1676 (in Chinese with English abstract).
[17] 王邦锡, 黄久常, 王辉 . 不同植物在水分胁迫条件下脯氨酸的累积与抗旱性的关系, 植物生理学报, 1989,15:46-51.
Wang B X, Huang J C, Wang H . Relationship between accumulation of proline and drought resistance of different plants under water stress conditions. Acta Phytophysiol Sin, 1989,15:46-51.
[18] Liu F L, Christian R J, Mathias N A . Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Res, 2004,86:1-13.
doi: 10.1016/S0378-4290(03)00165-5
[19] Liu F L, Andersen M N, Jacobsen S E, Jensen C R . Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ Exp Bot, 2005,54:33-40.
doi: 10.1016/j.envexpbot.2004.05.002
[20] 高小丽, 孙健敏, 高金锋, 冯佰利, 柴岩, 贾志宽 . 不同基因型绿豆叶片光合性能研究. 作物学报, 2007,33:1154-1161.
Gao X L, Sun J M, Gao J F, Feng B L, Chai Y, Jia Z K . Photosynthetic performance in the leaves of different mung bean genotypes. Acta Agron Sin, 2007,33:1154-1161 (in Chinese with English abstract).
[21] Baker N R, Rosenqvis E . Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004,55:1607-1621.
doi: 10.1093/jxb/erh196
[22] Maxwell K, Johnson G N . Chlorophyll fluorescence: a practical guide. J Exp Bot, 2000,345:659-668.
[23] 郝乃斌, 戈巧英, 张玉竹, 徐继, 张国铮, 谭克辉, 杜维广, 张桂茹, 栾晓燕, 黄承运 . 高光效大豆光合特征的研究. 大豆科学, 1989,8:283-287.
Hao N B, Ge Q Y, Zhang Y Z, Xu J, Zhang G Z, Tan K, Du W G, Zhang G R, Luan X Y, Huang C Y . Studies on the photosynthetic properties of soybean with photosynthetic efficiency. Soybean Sci, 1989,8:283-287 (in Chinese with English abstract).
[24] 张明才, 何钟佩, 田晓莉, 段留生, 王保民, 翟志席, 董学会, 李召虎 . SHK-6对干旱胁迫下大豆叶片生理功能的作用. 作物学报, 2005,31:1215-1220.
Zhang M C, He Z P, Tian X L, Duan L S, Wang B M, Zhai Z X, Dong X H, Li Z H . Effects of plant growth regulator SHK-6 on physiological function of soybean leaves under water deficiency. Acta Agron Sin, 2005,31:1215-1220 (in Chinese with English abstract).
[25] 王磊, 王鹏程, 张彤, 张恒月, 丁圣彦 . 结荚期短期干旱和复水对大豆叶片光合和产量的影响. 生态学报, 2009,29:3328-3332.
Wang L, Wang P C, Zhang T, Zhang H Y, Ding S Y . Effect of short-term drought and rewatering during the pod-setting stage on leaf photosynthesis and yield of the soybean. Acta Ecol Sin, 2009,29:3328-3332 (in Chinese with English abstract).
[26] Sarquı́s J I, Gonzalez H, de Jiménez E S, Dunlap J R . Physiological traits associated with mass selection for improved yield in a maize population. Field Crops Res, 1998,56:239-246.
doi: 10.1016/S0378-4290(96)01056-8
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[10] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[11] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[12] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[13] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[14] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[15] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!