作物学报 ›› 2019, Vol. 45 ›› Issue (3): 469-476.doi: 10.3724/SP.J.1006.2019.84082
张晓红1,胡根海1,王寒涛2,王聪聪2,魏恒玲2,付远志1,喻树迅2,*()
Xiao-Hong ZHANG1,Gen-Hai HU1,Han-Tao WANG2,Cong-Cong WANG2,Heng-Ling WEI2,Yuan-Zhi FU1,Shu-Xun YU2,*()
摘要:
从陆地棉中克隆了磷脂酰乙醇胺结合蛋白GhTFL1a和GhTFL1c基因, 并对该基因进行表达分析、启动子预测和启动子活性研究。利用启动子分析软件PlantCARE预测得出, GhTFL1a启动子区域有脱落酸响应元件、干旱诱导的MYB结合位点和顶芽特异表达响应元件等; GhTFL1c启动子区域有乙烯响应元件、干旱诱导的MYB结合位点和水杨酸响应元件。因此, 将pGhTFL1a和pGhTFL1c分别构建到启动子检测载体pBI121-GUS上形成融合表达载体, 通过烟草瞬时转化检测得出这2个基因的启动子都具有活性。实时荧光定量 PCR分析表明, GhTFL1a和GhTFL1c在光周期处理和不同材料的陆地棉(栽培种和半野生种)中表达模式呈相反趋势。GhTFL1a基因受脱落酸(abscisic acid, ABA)、水杨酸(salicylic acid, SA)和盐胁迫诱导, 而GhTFL1c可以响应赤霉素(gibberellin, GA)、SA和ABA胁迫。研究结果初步表明, GhTFL1a和GhTFL1c可能参与了植物逆境胁迫脱落酸和水杨酸响应的调控, 为在棉花中进一步阐明其功能奠定了基础。
[1] |
董承光, 王娟, 周小凤, 马晓梅, 李生秀, 王旭文, 肖光顺, 李保成 . 新疆早熟陆地棉早熟性状的遗传分析. 西北农业学报, 2014,23(12):96-101.
doi: 10.7606/j.issn.1004-1389.2014.12.015 |
Dong C G, Wang J, Zhou X F, Ma X M, Li S X, Wang X W, Xiao G S, Li B C . Inheritance of earliness traits in xinjiang early-maturity upland cotton ( G. hirsutum L.). Acta Agric Boreali-occident Sin, 2014,13(12):96-101 (in Chinese with English abstract).
doi: 10.7606/j.issn.1004-1389.2014.12.015 |
|
[2] |
喻树迅, 王寒涛, 魏恒玲, 宿俊吉 . 棉花早熟性研究进展及其应用. 棉花学报, 2017,29:1-10.
doi: 10.11963/1002-7807.ysxysx.20170825 |
Yu S X, Wang H T, Wei H L, Su J J . Research progress and application of early maturity in upland cotton. Cotton Sci, 2017,29:1-10 (in Chinese with English abstract).
doi: 10.11963/1002-7807.ysxysx.20170825 |
|
[3] |
Chautard H, Jacquet M, Schoentgen F, Bureaud N, Benedetti H . Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae . Eukary Cell, 2004,3:459-470.
doi: 10.1128/EC.3.2.459-470.2004 pmid: 15075275 |
[4] |
Hengst U, Albrecht H, Hess D, Monard D . The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors . J Biol Chem, 2001,276:535-540.
doi: 10.1074/jbc.M002524200 pmid: 11034991 |
[5] |
Banfield M J, Barker J J, Perry A C, Brady R L . Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction . Structure, 1998,6:1245-1254.
doi: 10.1016/S0969-2126(98)00125-7 pmid: 9782050 |
[6] |
Ryu J Y, Park C M, Seo P J . The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Mol Cells, 2011,32:295-303.
doi: 10.1007/s10059-011-0112-9 pmid: 3887636 |
[7] |
Hanzawa Y, Money T, Bradley D . A single amino acid converts a repressor to an activator of flowering . Proc Natl Acad Sci USA, 2005,102:7748-7753.
doi: 10.1073/pnas.0500932102 pmid: 15894619 |
[8] |
Conti L, Bradley D . TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell, 2007,19:767-778.
doi: 10.1105/tpc.106.049767 pmid: 17369370 |
[9] |
Hanano S, Goto K . Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell, 2011,23:3172-3184.
doi: 10.1105/tpc.111.088641 |
[10] | Serrano-Mislata A, Fernandez-Nohales P, Domenech M J, Hanzawa Y, Bradley D, Madueno F . Separate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity. Development, 2016,143:3315-3327. |
[11] |
Liu X, Zhang J, Abuahmad A, Franks R G, Xie D Y, Xiang Q Y . Analysis of two TFL1 homologs of dogwood species ( Cornus L.) indicates functional conservation in control of transition to flowering. Planta, 2016,243:1129-1141.
doi: 10.1007/s00425-016-2466-x pmid: 26825444 |
[12] |
Rantanen M, Kurokura T, Jiang P, Mouhu K, Hytonen T . Strawberry homologue of terminal flower1 integrates photoperiod and temperature signals to inhibit flowering . Plant J, 2015,82:163-173.
doi: 10.1111/tpj.12809 pmid: 25720985 |
[13] |
Si Z F, Liu H, Zhu J K, Chen J D, Wang Q, Fang L, Gao F K, Tian Y, Chen Y L, Chang L J, Liu B L, Han Z G, Zhou B L, Hu Y, Huang X Z, Zhang T Z . Mutation of SELF-PRUNING homologs in cotton promotes short-branching plant architecture . J Exp Bot, 2018,69:2543-2553.
doi: 10.1093/jxb/ery093 pmid: 29547987 |
[14] |
Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X . Genome sequence of cultivated upland cotton ( Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530.
doi: 10.1038/nbt.3208 pmid: 25893780 |
[15] |
Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M , Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207 pmid: 25893781 |
[16] |
Sparkes I A, Runions J, Kearns A, Hawes C . Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants . Nat Protoc, 2006,1:2019-2025.
doi: 10.1038/nprot.2006.286 pmid: 17487191 |
[17] |
Hori K, Matsubara K, Yano M . Genetic control of flowering time in rice: integration of Mendelian genetics and genomics . Theor Appl Genet, 2016,129:2241-2252.
doi: 10.1007/s00122-016-2773-4 |
[18] |
东锐, 院海英, 顾超, 郑银英, 黄先忠, 崔百明 . 棉花GhFTL1基因的克隆及初步功能分析. 棉花学报, 2011,23:515-521.
doi: 10.3969/j.issn.1002-7807.2011.06.005 |
Dong R, Yuan H Y, Gu C, Zheng Y Y, Huang X Z, Cui B M . Cloning and primary analysis of the function of GhFTL1 gene in cotton(Gossypium hirsutum L.). Cotton Sci, 2011,23:515-521 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-7807.2011.06.005 |
|
[19] |
吴嫚, 范术丽, 宋美珍, 庞朝友, 喻树迅 . 棉花GhCO基因的克隆与表达分析. 棉花学报, 2010,22:387-392.
doi: 10.3969/j.issn.1002-7807.2010.05.001 |
Wu M, Fan S L, Song M Z, Pang C Y, Yu S X . Cloning and expression analysis of GhCO gene in Gossypium hirsutum L. Cotton Sci, 2010,22:387-392 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-7807.2010.05.001 |
|
[20] | 张文香, 庞朝友, 范术丽, 宋美珍, 魏恒玲, 喻树迅 . 棉花SVP-like基因GhMADS29的克隆与表达分析. 安徽农业科学, 2015,43(15):28-31. |
Zhang W X, Pang C Y, Fan S L, Song M Z, Wei H L, Yu S X . Molecular cloning and expression analysis of SVP-like gene GhMADS29 from Gossypium hirsutum L. J Anhui Agric Sci, 2015,43(15):28-31 (in Chinese with English abstract). | |
[21] |
Jeong S, Clark S E . Photoperiod regulates flower meristem development in Arabidopsis thaliana. Genetics, 2005,169:907-915.
doi: 10.1534/genetics.104.033357 |
[22] |
Mengin V, Pyl E T, Alexandre M T, Sulpice R, Krohn N, Encke B, Stitt M . Photosynthate partitioning to starch in Arabidopsis thaliana is insensitive to light intensity but sensitive to photoperiod due to a restriction on growth in the light in short photoperiods. Plant Cell Environ, 2017,40:2608-2627.
doi: 10.1111/pce.13000 pmid: 28628949 |
[23] |
Zhang X H, Wang C C, Pang C Y, Wei H L, Wang H T, Song M Z, Fan S L, Yu S S . Characterization and functional analysis of PEBP family genes in upland cotton ( Gossypium hirsutum L.). PLoS One, 2016,11:e0161080.
doi: 10.1371/journal.pone.0161080 pmid: 725 |
[24] |
Ryu J Y, Lee H J, Seo P J, Jung J H, Ahn J H, Park C M . The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Mol Plant, 2014,7:377-387.
doi: 10.1093/mp/sst114 pmid: 23935007 |
[1] | 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202. |
[2] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[3] | 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51. |
[4] | 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203. |
[5] | 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795. |
[6] | 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333. |
[7] | 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392. |
[8] | 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126. |
[9] | 朱国忠,张芳,付洁,李乐晨,牛二利,郭旺珍. 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价[J]. 作物学报, 2018, 44(11): 1631-1639. |
[10] | 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244. |
[11] | 沈超,李定国,聂以春,林忠旭. 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL[J]. 作物学报, 2017, 43(12): 1733-1745. |
[12] | 吕有军,杨卫军,赵兰杰,姚金波,陈伟,李燕,张永山. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479. |
[13] | 杨延龙,肖飞,徐守振,王宇轩,左文庆,梁福斌,张旺锋. 新疆早熟陆地棉品种更替产量提高过程中冠层结构特征的演变[J]. 作物学报, 2017, 43(10): 1518-1526. |
[14] | 陈旭升,狄佳春,周向阳,赵亮. 陆地棉高秆突变体的激素变化与Tp基因的染色体定位[J]. 作物学报, 2017, 43(06): 935-939. |
[15] | 朱守鸿,赵兰杰,刘永昌,李艳军,张新宇,孙杰. 陆地棉微管结合蛋白CLASP家族基因的鉴定及表达分析[J]. 作物学报, 2017, 43(03): 389-398. |
|