欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (3): 460-468.doi: 10.3724/SP.J.1006.2019.84002

• 耕作栽培·生理生化 • 上一篇    下一篇

光温处理对小豆苗期生理性状及叶绿素合成前体的影响

何宁1,王雪扬1,曹良子1,曹大为1,洛育1,姜连子2,孟英1,冷春旭1,唐晓东1,李一丹1,万书明1,卢环1,程须珍3,*()   

  1. 1 黑龙江省农业科学院, 黑龙江哈尔滨 150086
    2 东北农业大学食品学院, 黑龙江哈尔滨 150030
    3 中国农业科学院作物科学研究所, 北京100081
  • 收稿日期:2018-01-04 接受日期:2018-12-24 出版日期:2019-03-12 网络出版日期:2019-01-05
  • 通讯作者: 程须珍
  • 基金资助:
    本研究由农业部引进国际先进农业科学技术计划(948计划)项目(2015-Z54);国家现代农业(食用豆)产业技术体系建设专项资助(CARS-08-G8)

Effects of photoperiods and temperatures on physiological characteristics and chlorophyll synthesis precursors of adzuki bean seedlings

Ning HE1,Xue-Yang WANG1,Liang-Zi CAO1,Da-Wei CAO1,Yu LUO1,Lian-Zi JIANG2,Ying MENG1,Chun-Xu LENG1,Xiao-Dong TANG1,Yi-Dan LI1,Shu-Ming WAN1,Huan LU1,Xu-Zhen CHENG3,*()   

  1. 1 Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    2 Food Science College, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2018-01-04 Accepted:2018-12-24 Published:2019-03-12 Published online:2019-01-05
  • Contact: Xu-Zhen CHENG
  • Supported by:
    This study was supported by the Program of Introducing International Super Agricultural Science and Technology (948 Program)(2015-Z54);the China Agriculture Research System(CARS-08-G8)

摘要:

探讨不同低温和光照条件下小豆苗期的冷害发生机制及引起初生叶黄化和叶绿素合成的受阻位点, 旨在为小豆耐寒新品种选育及栽培提供理论依据。选择2个对温度和光照反应不同的日本小豆品种, 利用人工气候室再现小豆苗期的低温障碍, 研究低温遮光处理(昼夜10~13°C, 2%遮光) 18 d和28 d对小豆苗期H2O2、SOD、CAT、APX、叶绿素的影响; 利用植物生长箱再现小豆苗期的黄化障碍, 研究不同的低温处理长度(1 d、3 d、5 d、7 d; 10°C, 50 μmol m -2s -1)和暗处理长度(25°C, 黑暗1 d、3 d、5 d、7 d)对绿化后(24 h、25°C、62.5 μmol m -2s -1)叶绿素合成能力及受阻位点的影响。苗期小豆耐低温和不耐低温品种的最大差异是长期低温遮光处理的H2O2含量和SOD活性。长期低温遮光处理后不耐低温品种的H2O2含量是耐低温品种的约66倍, 但随着绿化处理时间的延长, 抗氧化酶活性和叶绿素含量急剧下降直至8 h后消失。与低温处理相比, 暗处理才是造成叶绿素合成能力差异的主要原因。对叶绿素合成中间产物的研究表明, 从ALA向Proto IX的转化可能受阻, 最终导致叶绿素合成受阻, 叶绿素含量下降。说明H2O2含量和SOD活性可能与小豆苗期耐冷性关系更密切。引起小豆苗期叶绿素合成受阻位点是Proto IX的转化。

关键词: 小豆, 光温处理, 抗氧化酶, 叶绿素合成

Abstract:

The aim of this study was to discuss the mechanism of chilling injury and the blocked site of chlorophyll synthesis in primary leaf, providing theoretical basis for breeding and cultivation of cold-resistant cultivars. Two Japanese adzuki bean varieties with different temperature and light reactions were used to study the effects of short-term (18 d) and long-term (28 d) low temperature shading treatments (10-13°C, 2% shading) on H2O2, SOD, CAT, APX, and Chl of seedlings in the artificial climate chamber, and the effects of the treatment durations of low temperature (1 d, 3 d, 5 d, 7 d, 10°C, 50 μmol m -2 s -1) and dark (25°C, 1 d, 3 d, 5 d, 7 d) under chlorophyll synthesis blocked site (25°C, and under illumiation at 62.5 μmol m -2 s -1for 24 h). The content of H2O2 and activity of SOD had significant difference between cold resistant and susceptible varieties during seedling stage. The content of H2O2 in susceptible variety was 66 folds of the resistant one, and with the greening treatment antioxidant activity and content of chlorophyll were rapidly dropped until totally vanished after 8 h. The main cause of difference in chlorophyll synthesis between the two varieties was the dark treatment but not the low temperature treatment. It was suggested that the transformation from δ-ALA to Proto IX might be blocked in chloroplast stroma, which eventually inhibited chlorophyll synthesis and decreased chlorophyll content. It is suggested that H2O2 content and SOD activity may be more closely related to the cold tolerance of adzuki bean at seedling stage. The transformation of Proto IX is the blocking site in chlorophyll synthesis which causes etiolated seedlings of adzuki bean.

Key words: adzuki bean, light temperature treatment, antioxidant enzymes, chlorophyll synthesis

表1

4种栽培模式在小豆苗期的不同光温处理"

栽培模式
Cultivation mode
出苗条件
Seedling conditions
苗期光照和低温处理
Illumination and low temperature treatment at seedling stage
绿化处理
Greening treatments
温度
Temp. (°C)
光照Illumination 温度
Temp. (°C)
光照
Illumination
(μmol m-2 s-1)
处理时间
Treatment
time (d)
温度
Temp. (°C)
光照
Illumination
(μmol m-2 s-1)
处理时间
Treatment time (h)
I 20-25 Dark 10-13 72% shading 18, 28 20-25 Natural light 3, 8, 28
II 25 Dark 10 50 1, 3, 5, 7 25 62.5 24
III 25 Dark 25 Dark 1, 3, 5, 7 25 62.5 24
IV 25 Dark 25 Dark 7 25 62.5 0, 6, 12, 24

图1

低温遮光处理后绿化恢复情况 A: 低温处理18 d绿化0 h; B: 低温处理18 d绿化3 h; C: 低温处理18 d绿化8 h; D: 低温处理18 d绿化28 h; E: 低温处理28 d绿化0小时; F: 低温处理28 d绿化3 h; G: 低温处理28 d绿化8 h; H: 低温处理28 d绿化28 h。"

表2

小豆苗期不同低温、绿化处理后叶片中叶绿素、过氧化氢含量及抗氧化酶活性"

品种
Variety
低温处理
Low temperature treatment (d)
绿化处理
Greening treatment (h)
Chl 含量
Chlorophyll content (μg g-1)
H2O2含量
H2O2 content
(mmol kg-1 FW)
SOD活性
SOD activity
(Unit mg-1)
APX 活性
APX activity
(μmol min-1 mg-1)
CAT 活性
CAT activity
(μmol min-1 mg-1)
赤根大纳言 18 0 32.1±2.0 cC 0.640±0.12 eD 0.0116±0.000 gG 0.166±0.03 bcAB 0.209±0.02 dE
Akanedainagon 3 32.5±5.0 cC 1.838±0.31 dD 0.0296±0.002 bB 0.191±0.02 abAB 0.675±0.13 cDE
8 46.8±2.4 bB 1.541±0.33 deD 0.0306±0.002 aA 0.202±0.00 aA 1.867±0.28 aAB
28 115.6±8.2 aA 0.469±0.10 eD 0.0168±0.001 cC 0.106±0.01 deD 0.927±0.02 bcCD
斑小粒系-1 18 0 12.6±2.3 eD 1.354±0.31 deD 0.0141±0.001 eE 0.157±0.01 cBC 0.794±0.13 cCDE
Buchisyouryukei-1 3 14.7±0.8 deD 7.523±1.51 aA 0.0139±0.001 fF 0.153±0.03 cBC 1.947±0.22 aA
8 22.0±2.3 dCD 5.367±0.56 bB 0.0106±0.001 hH 0.117±0.01 dCD 1.318±0.21 bBC
28 23.2±0.3 dCD 3.759±0.12 cC 0.0166±0.001 dD 0.078±0.01 eD 1.035±0.12 bcCD
赤根大纳言 28 0 19.9±00.3 cBC 0.269±0.01 eE 0.0129±0.001 eE 0.079±0.01 dC 0.413±0.05 eD
Akanedainagon 3 32.6±11.3 bA 0.656±0.01 deDE 0.0353±0.006 bcBC 0.126±0.01 bcdBC 0.703±0.04 cdeBCD
8 38.7±12.8 aA 0.322±0.02 eDE 0.0461±0.002 bAB 0.200±0.00 aA 1.188±0.19 bAB
28 38.8±02.4 aA 0.251±0.00 eE 0.0194±0.000 deCDE 0.139±0.01 bcABC 0.812±0.03 cdBCD
斑小粒系-1 28 0 13.7±0.5 dCD 17.780±0.36 aA 0.0623±0.008 aA 0.089±0.02 cdC 0.544±0.14 deCD
Buchisyouryukei-1 3 13.2±3.2 dD 7.106±0.91 bB 0.0156±0.000 eDE 0.092±0.02 cdC 1.593±0.16 aA
8 0 0 0 0 0
28 0 0 0 0 0

表3

不同的低温和暗处理后小豆初生叶片的叶绿素含量"

日数
Treatment days
低温处理叶绿素含量
Content of chlorophyll under low temperature treatment
暗处理叶绿素含量
Content of chlorophyll under shading treatment
赤根大纳言
Akanedainagon
斑小粒系-1
Buchisyouryukei-1
赤根大纳言
Akanedainagon
斑小粒系-1
Buchisyouryukei-1
1 d 645.9±61.7 aA 621.5±50.0 aA 325.7±39.1 aA 419.1±32.4 aA
3 d 612.2±55.8 abA 547.5±49.9 aA 268.0±38.7 bAB 343.7±38.9 bB
5 d 536.6±36.3 bcAB 388.4±39.0 bB 198.9±23.2 cBC 96.7±32.5 cC
7 d 459.3±59.1 cB 299.2±14.0 cB 138.3±7.4 dC 49.1±5.7 cC

表4

暗处理7 d的黄化苗经绿化处理后主要叶绿素前质体的含量"

品种
Variety
绿化处理
Greening
treatment (h)
Δ-氨基酮戊酸
ALA
原卟啉IX
Proto IX
Mg-原卟啉IX
Mg-Proto IX
原叶绿素酸
Pchl
叶绿素
Chl
赤根大纳言 0 1.2±0.3 eE 88.4±2.5 cdCD 9.3±0.8 cC 5.7±0.7 cC 23.4±3.7 dD
Akanedainagon 6 2.6±0.1 dD 103.9±12.1 cBCD 16.7±1.8 cC 10.0±0.9 cC 68.1±7.1 cC
12 4.1±0.8 bBC 157.4±12.3 bB 31.0±8.9 bB 19.8±6.1 bB 142.3±10.5 bB
24 5.1±0.5 aA 353.8±38.2 aA 70.5±12.8 aA 44.5±8.2 aA 227.7±10.5 aA
斑小粒系-1 0 2.5±0.1 dD 124.5±7.4 bcBC 12.9±2.8 cC 8.2±2.0 cC 30.6±0.1 dD
Buchisyouryukei-1 6 3.4±0.1 cC 78.1±13.0 cdCD 11.1±3.6 cC 6.0±1.9 cC 26.2±5.5 dD
12 3.6±0.1 bcC 54.9±5.8 dD 7.8±0.6 cC 4.5±0.4 cC 18.8±1.2 dD
24 4.8±0.1 aAB 48.0±12.8 dD 6.8±1.3 cC 4.0±1.0 cC 17.4±1.0 dD

图2

黄化初生叶的绿化处理对叶绿素合成途径前质体的影响"

[1] 徐宁, 程须珍, 王丽侠, 王素华, 刘长友, 孙蕾, 梅丽 . 用于中国小豆种质资源遗传多样性分析SSR分子标记筛选及应用. 作物学报, 2009,35:219-227.
Xu N, Cheng X Z, Wang L X, Wang S H, Liu C Y, Sun L, Mei L . Screening and application of SSR molecular markers for genetic diversity analysis of Chinese adzuki bean germplasm resources. Acta Agron Sin, 2009,35:219-227 (in Chinese with English abstract).
[2] 村田吉平 . 北海道における作物育種. 札幌: 北海道協同組合通信社, 1998. pp 139-155.
Murata K P. Hokkaido Plant Breeding. Sapporo: Hokkaido Agricultural Cooperatives Publisher, 1998. pp 139-155 (in Japanese).
[3] 新免輝夫 . 現代植物生理学. 东京: 環境応答, 1991. pp 142-158.
Shinme T. Modern Plant Physiology. Tokyo: Institute of Society Press, 1991. pp 142-158(in Japanese).
[4] Northen R T . Home Orchid Growing, 3rd edn. New York: Van Nostrand Reinhold, 1970. pp 19-28.
[5] 横田明穂 . 植物ストレスにおける応答. 東京: 学会出版センター, 2002. pp 209-224.
Yokota M H. Introduction to Plant Molecular Physiology. Tokyo: Institute of Society Press, 2002. pp 209-224(in Japanese).
[6] 李進才 , 趙習コウ, 松井鋳一郎 . 光ストレスおよび遮光栽培におけるCattleyaとCymbidium葉の抗酸化酵素活性および色素含量の変化. 園学雑, 2001,70:372-379.
Li J C, Zhao X K, Matsui I . Effect of light stress and shading cultivation on antioxidant enzyme activity and pigment content of cattleya and cymbidium leaves. Jpn Hortic J, 2001,70:372-379 (in Japanese).
[7] Salin W L . Toxic oxygen species and protective systems of the chloroplast. Physiol Plant, 1988,72:681-689.
doi: 10.1111/ppl.1988.72.issue-3
[8] Shen W K, Nada S, Tachibana S . Oxygen radical generation in chilled leaves of cucumber ( Cucumis sativus L.) cultivars with different tolerances to chilling temperatures. Engei Gakkai Zasshi, 2008,68:780-787.
[9] Erich W, Laties G G . Quantification of hydrogen peroxide in plant extracts by the chemiluminescence reaction with luminal. Hytochemistry, 1982,21:827-831.
doi: 10.1016/0031-9422(82)80073-3
[10] 沈利星 . 雑草科学実験法. 第5項植物の抗酸化活性測定法. 東京: 日本雑草学会発行, 2001. pp 296-298.
Shen L X . Methods of Scientific Experiment of Weeds and Determination of Antioxidant Activity of Plants. Tokyo: The Japanese Weed Society Publishers, 2001. pp 296-298 (in Japanese).
[11] 加藤荣 . 光合成研究法. 东京: 日本共立出版社, 1981. pp 40-41.
Katou E. Research Methods of Photosynthesis. Tokyo: Japan Co-publisher, 1981. pp 40-41(in Japanese).
[12] 何寧, 小嶋道之, 黒澤聪, 加藤清明 . 低温遮光処理アズキ初生葉の過酸化水素含量と抗酸化酵素活性に及ぼす影響. 日本作物学会記事, 2006,75:360-365.
He N, Kojima M Y, Kurosawa A, Kato K . Effects of chilling and shading on hydrogen peroxide content and activity of oxidation-inhibiting enzymes in the primary leaves of adzuki beans. Jpn J Crop Sci, 2006,75:360-365 (in Japanese).
[13] Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Hörtensteiner S, Gidoni D, Gal-On A, Goldschmidt E E, Eyal Y . Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell, 2007,19:1007-1022.
doi: 10.1105/tpc.107.050633
[14] Von Gromoff E D, Alawady A, Meinecke L, Grimm B, Beck C F . Heme, a plastid-derived regulator of nuclear gene expression in chlamydomonas. Plant Cell, 2008,20:552-567.
[15] 王平荣, 张帆涛, 高家旭, 孙小秋, 邓晓建 . 高等植物叶绿素生物合成的研究进展. 西北植物学报, 2009,29:629-636.
doi: 10.3321/j.issn:1000-4025.2009.03.032
Wang P R, Zhang F T, Gao J X, Sun X Q, Deng X J . An overview of chlorophyll biosynthesis in higher plants. Acta Bot Boreali- Occident Sin, 2009,29:629-636 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-4025.2009.03.032
[16] Okuda T Y, Matuda A, Yamanaka S, Sagisaka S . Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol, 1991,97:1265-1267.
doi: 10.1104/pp.97.3.1265 pmid: 16668520
[17] Fridovich I . Biological effects of the superoxide radicals. Arch Biochem Biophys, 1986,247:1-11.
doi: 10.1016/0003-9861(86)90526-6 pmid: 3010872
[18] 重岡成 . 活性酸素代謝の応答機構. 光合成生物の活性酸素代謝の応答機構. 生物工学会誌, 2001,79:303-322.
Shigeoka N R . The response mechanism of photosynthetic biological reactive oxygen metabolism. Jpn J Bioengineer, 2001,79:303-322 (in Japanese).
[19] Azevedo R A, Alas R M, Smith R J, Lea P J . Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant, 1998,104:280-292.
doi: 10.1034/j.1399-3054.1998.1040217.x
[20] Foyer C H, Mullineaux P . Causes of photooxidative stress and amelioration of defense systems in plants. Acta Ophthalmol, 1994,44:276-315.
doi: 10.1111/j.1755-3768.1966.tb08068.x
[21] 宮尾光恵, 水澤直樹 . 強光環境から身を守る植物の防御機構. 化学と生物, 1999,37:396-400.
Miyao H E, Mizusawa N K . The plant defense mechanism obtained from the strong light environment. Jpn Chem Biol, 1999,37:396-400 (in Japanese).
[22] 王宝增 . 叶绿素降解代谢的研究进展. 生物学教学, 2010,35(2):7-9.
doi: 10.3969/j.issn.1004-7549.2010.02.004
Wang B Z . Research progress of chlorophyll degradation metabolism. Biol Teach, 2010,35(2):7-9 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-7549.2010.02.004
[23] Gopal K, Pattanayak G K, Biswal A K, Reddy V S, Tripathy B C . Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem Biophys Res Commun, 2005,326:466-471.
doi: 10.1016/j.bbrc.2004.11.049 pmid: 15582600
[24] 田中歩, 平島真澄, 田中亮一 . クロロフェル代謝と植物の生育. 化学と生物, 2004,42:2-26.
Tanaka A, Hirasima M S, Tanaka L Y . The development of chlorophyll metabolism and plant. Chem Biol, 2004,42:2-26 (in Japanese with English abstract).
[1] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[2] 项洪涛, 李琬, 郑殿峰, 王诗雅, 何宁, 王曼力, 杨纯杰. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J]. 作物学报, 2021, 47(3): 494-506.
[3] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[4] 万丽丽, 王转茸, 辛强, 董发明, 洪登峰, 杨光圣. BnA7HSP70分子伴侣结合蛋白超表达能够提高甘蓝型油菜耐旱性[J]. 作物学报, 2018, 44(04): 483-492.
[5] 马燕明,陈春海,杨凯,李奕松,赵波,李江,李永强,万平. 野生小豆和栽培小豆microRNA全基因组鉴定与比较分析[J]. 作物学报, 2016, 42(09): 1273-1281.
[6] 卢霖,董志强*,董学瑞,李光彦. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响[J]. 作物学报, 2016, 42(04): 561-573.
[7] 徐金刚,吕川根,刘莉,吕春芳,马静,夏士健,陈国祥,高志萍. 水稻光氧化突变体812HS的光合和抗氧化特性[J]. 作物学报, 2016, 42(04): 574-582.
[8] 张英华,杨佑明,曹莲,郝杨凡,黄菁,李金鹏,姚得秀,王志敏*. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响[J]. 作物学报, 2015, 41(01): 136-144.
[9] 白鹏,程须珍*,王丽侠,王素华,陈红霖. 小豆遗传差异、群体结构和连锁不平衡水平的SSR分析[J]. 作物学报, 2014, 40(05): 788-797.
[10] 丁秀文,张国良,戴其根,朱青. 1,2,4-三氯苯胁迫对水稻分蘖盛期植株生长和生理特性的影响[J]. 作物学报, 2014, 40(03): 487-496.
[11] 刘长友,范保杰,曹志敏,苏秋竹,王彦,张志肖,程须珍,田静. 利用SSR标记分析野生小豆及其近缘野生植物的遗传多样性[J]. 作物学报, 2014, 40(01): 174-180.
[12] 王永军,杨今胜,袁翠平,柳京国,李登海,董树亭. 超高产夏玉米花粒期不同部位叶片衰老与抗氧化酶特性[J]. 作物学报, 2013, 39(12): 2183-2191.
[13] 张会慧,田褀,刘关君,胡彦波,吴翔宇,田野,李鑫,孙广玉. 2-Cys Prx基因烟草抗氧化酶和PSII电子传递对盐和光胁迫的响应[J]. 作物学报, 2013, 39(11): 2023-2029.
[14] 侯鹏飞,马俊青,赵鹏飞,张欢玲,赵会杰,刘华山,赵一丹,汪月霞. 外源甜菜碱对干旱胁迫下小麦幼苗叶绿体抗氧化酶及psbA基因表达的调节[J]. 作物学报, 2013, 39(07): 1319-1324.
[15] 杨东清,王振林*,尹燕枰,倪英丽,杨卫兵,蔡铁,彭佃亮,徐彩龙,崔正勇,刘铁宁,徐海成. 外源ABA和6-BA对不同持绿型小麦旗叶衰老的影响及其生理机制[J]. 作物学报, 2013, 39(06): 1096-1104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!