作物学报 ›› 2018, Vol. 44 ›› Issue (04): 483-492.doi: 10.3724/SP.J.1006.2018.00483
万丽丽1,*(), 王转茸2, 辛强2, 董发明2, 洪登峰2, 杨光圣2
Li-Li WAN1,*(), Zhuan-Rong WANG2, Qiang XIN2, Fa-Ming DONG2, Deng-Feng HONG2, Guang-Sheng YANG2
摘要:
分子伴侣结合蛋白广泛参与植物生长发育过程, 在逆境下能够保护植物细胞免受胁迫。在甘蓝型油菜中超表达油菜含有HSP70热激蛋白结构域的分子伴侣基因BnA7HSP70, 所得到的转基因植株在缺水条件下延缓萎蔫。通过生理生化实验证明, 干旱条件下转基因植株有着更高的相对含水量、更强的渗透调节能力和较低的脂质膜过氧化性。另外, 转基因植株的幼苗在萌发期表现出对糖基化酶抑制剂衣霉素处理的耐受性。Evans blue染色实验证明, 转基因植株逆境下叶片死亡细胞数目比非转基因植株减少, 叶片衰老相关标记基因BnCNX1在转基因植株中下调表达证明, 超表达BnA7HSP70基因所介导的途径能够减轻逆境胁迫下的植株衰老, 保持叶片持绿性。在转基因植株中内质网和渗透胁迫产生的细胞死亡标记基因N-Rich蛋白BnNRP延迟表达证明, 在油菜中增强BnA7HSP70基因的表达能够缓解未折叠蛋白途径(unfold protein response, UPR)和NRP (N-rich pathway)途径介导的叶片黄萎, 并降低油菜叶片失绿的标记基因BnLSC222和BnLSC54的表达。研究结果表明, 在油菜中超表达BnA7HSP70基因能够提高植株在干旱条件下内质网胁迫的耐受性。
[1] | Hartl F U, Bracher A, Hayer-Hartl M.Molecular chaperones in protein folding and proteostasis.Nature, 2011, 475: 324-332 |
[2] | Wang W, Vinocur B, Shoseyov O, Altman A.Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.Trends Plant Sci, 2004, 9: 244-252 |
[3] | Carvalho H H, Brustolini O J, Pimenta M R.The molecular chaperone binding protein BiP prevents leaf dehydration-induced cellular homeostasis disruption.PLoS One, 2014, 9: e86661 |
[4] | Liu J X, Howell S H.Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol, 2016, 211: 418-428 |
[5] | Valente M A, Faria J A, Soares-Ramos J R. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco.J Exp Bot, 2009, 60: 533-546 |
[6] | Liu J X, Howell S H.Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants.Plant Cell, 2010, 22: 2930-2942 |
[7] | Carvalho H H, Silva P A, Mendes G C.The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events.Plant Physiol, 2014, 164: 654-670 |
[8] | Srivastava R, Deng Y, Howell S H.Stress sensing in plants by an ER stress sensor/transducer, bZIP28.Front Plant Sci, 2014, 5: 59 |
[9] | Shen J, Chen X, Hendershot L, Prywes R.ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals.Dev Cell, 2002, 3: 99-111 |
[10] | Ma Y, Hendershot L M.ER chaperone functions during normal and stress conditions.J Chem Neuroanat, 2004, 28: 51-65 |
[11] | Srivastava R, Chen Y, Deng Y, Brandizzi F, Howell S H.Elements proximal to and within the transmembrane domain mediate the organelle-to-organelle movement of bZIP28 under ER stress conditions.Plant J, 2012, 70: 1033-1042 |
[12] | Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding H P, Ron D.Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1.Science, 2000, 287: 664-666 |
[13] | Martinez I M, Chrispeels M J.Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes.Plant Cell, 2003, 15: 561-576 |
[14] | Costa M D, Reis P A, Valente M A.A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant-specific asparagine-rich proteins to promote cell death.J Biol Chem, 2008, 283: 20209-20219 |
[15] | Liu J X, Howell S H. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell, 2010, 22: 782-796 |
[16] | Gomer C J, Ferrario A, Rucker N, Wong S, Lee A S.Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization.Cancer Res, 1991, 51: 6574-6579 |
[17] | Alvim F C, Carolino S M, Cascardo J C.Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress.Plant Physiol, 2001, 126: 1042-1054 |
[18] | Cascardo J C, Almeida R S, Buzeli R A.The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses.J Biol Chem, 2000, 275: 14494-14500 |
[19] | Cascardo J C, Buzeli R A, Almeida R S, Otoni W C, Fontes E P.Differential expression of the soybean BiP gene family.Plant Sci, 2001, 160: 273-281 |
[20] | Anderson J V, Li Q B, Haskell D W, Guy C L.Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation.Plant Physiol, 1994, 104: 1359-1370 |
[21] | Park C J, Bart R, Chern M.Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice.PLoS One, 2010, 5: e9262 |
[22] | 宋仲戬, 张登峰, 李永祥. 石云素, 宋燕春, 王天宇, 黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析. 作物学报, 2015, 41: 708-716 |
Song Z J, Zhang D F, Li Y X, Shi Y S, Song Y C, Wang T Y, Li Y.Cloning of maize molecular chaperone gene ZmBiP2 and its functional analysis under abiotic stress.Acta Agron Sin, 2015, 41: 708-716 | |
[23] | 赵真真, 韩莹琰, 范双喜, 刘超杰, 郝敬虹, 李婷, 李雅博. 叶用莴苣热激蛋白LsHsp70-3701基因的克隆及高温胁迫下的表达分析. 核农学报, 2016, 30: 1083-1090 |
Zhao Z Z, Han Y Y, Fan S X, Liu C J, Hao J H, Li T, Li Y B.The cloning and expression analysis of Heat-shock protein LsHsp70-3701 of Leaf lettuce.J Nucl Agric Sci, 2016, 30: 1083-1090 (in Chinese with English abstract) | |
[24] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method.Methods, 2001, 25: 402-408 |
[25] | Hanfrey C, Fife M, Buchanan-Wollaston V.Leaf senescence inBrassica napus: expression of genes encoding pathogenesis- related proteins. Plant Mol Biol, 1996, 30: 597-609 |
[26] | Buchanan-Wollaston V.Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus: identification of a gene encoding a senescence-specific metallothionein- like protein. Plant Physiol, 1994, 105: 839-846 |
[27] | Srivastava R, Deng Y, Shah S, Rao A G, Howell S H.BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis.Plant Cell, 2013, 25: 1416-1429 |
[28] | Iwata Y, Fedoroff N V, Koizumi N.Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response.Plant Cell, 2008, 20: 3107-3121 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[7] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[8] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[9] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[10] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[11] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[12] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[13] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[14] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[15] | 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274. |
|