欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 2023-2029.doi: 10.3724/SP.J.1006.2013.02023

• 耕作栽培·生理生化 • 上一篇    下一篇

2-Cys Prx基因烟草抗氧化酶和PSII电子传递对盐和光胁迫的响应

张会慧1,田褀1,刘关君2,胡彦波1,吴翔宇2,田野1,李鑫1,孙广玉1,*   

  1. 1 东北林业大学生命科学学院,黑龙江哈尔滨150040;2 东北林业大学林木遗传育种国家重点实验室,黑龙江哈尔滨150040
  • 收稿日期:2012-10-26 修回日期:2013-06-09 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 孙广玉, E-mail:sungy@vip.sina.com
  • 基金资助:

    本研究由国家自然科学基金项目(30771746, 31070307),哈尔滨市科技创新人才研究专项(2013RFXXJ063)和黑龙江省自然科学基金重点项目(ZD2011-05)资助。

Responses of Antioxidant Enzyme and PSII Electron Transport in Leaf of Transgenic Tobacco Carrying 2-Cys Prx to Salt and Light Stresses

ZHANG Hui-Hui1,TIAN Qi1,LIU Guan-Jun2,HU Yan-Bo1,WU Xiang-Yu2,TIANA Ye1,LI Xin1,SUN Guang-Yu1,*   

  1. 1 College of Life Science, Northeast Forestry University China, Harbin 150040, China; 2 State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University China, Harbin 150040, China?
  • Received:2012-10-26 Revised:2013-06-09 Published:2013-11-12 Published online:2013-08-12
  • Contact: 孙广玉, E-mail:sungy@vip.sina.com

摘要:

以转2-Cys Peroxiredoxins (2-Cys Prx)基因的烟草(Nicotiana tabacum)为材料非转基因烟草为对照调查盐和光胁迫对转基因烟草幼苗叶片抗氧化酶和叶绿素荧光特性的影响揭示2-Cys Prx基因在植物抗逆方面的功能。结果表明,弱光(200 μmol m–2 s–1)下,随着盐浓度增大,转基因烟草和对照的SOD活性皆增加,APX活性变化不大,H2O2含量稍有升高;强光(1000 μmol m–2 s–1)下,随着盐浓度增大,转基因烟草SOD活性增强,APX活性下降,H2O2含量增加缓慢,而对照的H2O2含量迅速升高,转基因烟草叶片的PSII电子传递速率(ETR)、最大光化学效率(Fv/Fm)和实际光化学效率(ФPSII)均高于对照,而且PSII电子受体侧的受抑制程度明显低于对照。结果暗示强光和盐胁迫使APX活性降低的情况下,2-Cys Prx可有效清除细胞中过量H2O2,增强光合电子传递链的稳定性,特别是PSII电子受体侧的电子传递,有效减轻盐和高光胁迫引起的PSII光抑制

关键词: 2-Cys Prx基因烟草, 盐和光胁迫, 抗氧化酶, PSII电子传递

Abstract:

2-Cys peroxiredoxins (2-Cys Prxs) in plants were reported to localize to plant chloroplasts and perform antioxidative function during plant development and photosynthesis. This paper investigated the function of tobacco 2-Cys Prx gene overexpressed in transgenic tobacco (Nicotiana tabacum) plants with tolerance against light intensity and salt stresses. The results showed that superoxide dismutase (SOD) activity in leaves of two types of tobacco increased under weak light (200 μmol m–2 s–1) and salt stresses, ascorbateperoxidase (APX) activity changed little, and the content of H2O2 slightly increased. Salt stress enhanced SOD activity and decreased APX activity under strong light (1000 μmol m–2 s–1). The content of H2O2 in leaves of transgenic tobacco with 2-Cys Prx increased slower than that of wild tobacco. The electron transport rate (ETR), PSII photochemical efficiency (Fv/Fm) and actual photochemical efficiency (ФPSII) in leaves of transgenic tobacco with 2-Cys Prx were higher than those of control under high light. Electron transports in the receptor side were lower than that in control. The results suggested that 2-Cys Prx could be the effective removal of excess H2O2 while APX activity decreasedunder high light and salt stresses, and could reduce PSII photoinhibition induced by high light and salt stresses.

Key words: Transgenic tobacco carrying 2-Cys Prx, Salt and light stress, Antioxidant enzyme, PSII electron transport

[1]Reddy A R, Chaitanya K V, Vivekanandan M. Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 2004, 161: 1189–1202



[2]Hayakawa T, Kanematsu S, Asada K. Occurrence of Cu, Zn-superoxide dismutase in the intrathylakoid space of Spinach chloroplasts. Plant Cell Physiol, 1984, 25: 883–889



[3]Hayakawa T, Kanematsu S, Asada K. Purification and characterization of thylakoid-bound Mn-superoxide dismutase in Spinach chloroplasts. Planta, 1985, 166: 111–116



[4]Liang Y C, Hu F, Yang M C, Yu J H. An tioxidative defenses and water deficitinduced oxidative damage in rice (Oryza sativa L.) growing on non-flooded paddy soils with ground mulching. Plant Soil, 2003, 257: 407–416



[5]Sun H-W(孙卫红), Wang W-Q(王伟青), Meng Q-W(孟庆伟). Functional mechanism and enzymatic and molecular characteristic of ascorbate peroxidase in plants. Plant Physiol Commun (植物生理学通讯), 2005, 41(2): 143–147 (in Chinese with English abstract)



[6]Henmi T, Miyao M, Yamamoto Y. Release and reactive-oxygen-mediated damage of the oxygen-evolving complex subunits of PSII during photoinhibition. Plant Cell Physiol, 2004, 45: 243–250



[7]Jiao D-M(焦德茂), Li X(李霞), Huang X-Q(黄雪清), Ji B-H(季本华). The Relationship among photoinhibition, photooxidation and early aging at later developmental stages in different high yield varieties. Sci Agric Sin (中国农业科学), 2002, 35(5): 487–492 (in Chinese with English abstract)



[8]Aran M, Ferrero D S, Pagano E, Wolosiuk R A. Typical 2-Cys peroxiredoxins-modulation by covalent transformations and non covalent interactions. FEBS J, 2009, 276: 2478–2483



[9]Asada K. The water–water cycle as alternative photon and electron sinks. Philosoph Transact Royal Soc Biol Sci, 2000, 355: 1419–1430



[10]Dietz K J, Horling F, Konig J, Baier M. The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot, 2002, 53: 1321–1329



[11]Dietz K J. Plant peroxiredoxins. Ann Rev Plant Biol, 2003, 54: 93–107



[12]Santos C V D, Rey P. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci, 2006, 11: 329–334



[13]Horling F, Baier M, Dietz K J. Redox-regulation of the expression of the peroxide-detoxifying chloroplast 2-Cys peroxiredoxin in the liverwort Riccia fluitans. Planta, 2001, 214: 304–313



[14]Jang H H, Kim S Y, Park S K, Jeon H Y, Lee Y M, Jung J H, Lee S Y, Chae H B, Jung Y J, Lee K O, Lim C O, Chung W S, Bahk J D, Yun D J, Cho M J, Lee S Y. Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone function. FEBS Lett, 2006, 508: 351–355



[15]Baier M, Dietz K J. Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroper-oxide reductases. Plant Mol Biol, 1996, 31: 553–564



[16]Bhatt I, Tripathi B N. Plant peroxiredoxins: Catalytic mechanisms, functional significance and future perspectives. Biotechnol Adv, 2011, 29: 850–859



[17]Wang X, Phelan S A, Petros C, Taylor E F, Ledinski G, Jurgens G, Forsman-Semb K, Painen B. Peroxiredoxin 6 deficiency and atherosclerosis susceptibility inmice: significance of genetic background for assessing atherosclerosis. Atherosclerosis, 2004, 177: 61–70



[18]Sun J(孙锦), Jia Y-X(贾永霞), Guo S-R(郭世荣), Li J(李娟). Effects of seawater stress on m metabolism of reactive oxygen species and chlorophyll in chloroplasts of spinach (Spinacia olerancea L.). Acta Ecol Sin (生态学报), 2009, 29(8): 4361–4371 (in Chinese with English abstract)



[19]Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259–270



[20]Li H-S(李合生), Chen C-L(陈翠莲). The Experiment Principle and Technology of Plant Physiology (植物生理生化实验原理和技术). Wuhan: Huazhong Agricultural University Press, 1998 (in Chinese)



[21]Shen W-B(沈文飚), Xu L-L(徐郎莱), Ye M-B(叶茂炳), Zhang R-X(张荣铣). Study on determination of ASP activity. Plant Physiol Commun (植物生理学通讯), 1996, 32(3): 203–205 (in Chinese)



[22]Lin Z-F(林植芳), Li S-S(李双顺), Lin G-Z(林桂珠), Guo J-Y(郭俊彦). The accumulation of hydrogen peroxide in senescing leaves and chloroplasts in relation to lipid peroxidation. Acta Phytophysiol Sin (植物生理学报), 1988, 14(1): 16–12 (in Chinese with English abstract)



[23]Wang J-Y(王晶英), Ao H(敖红), Zhang J(张杰). The echnology and Experiment Principle of Plant Physiology (植物生理生化实验技术与原理). Harbin: Northeast Forestry University Press, 2003 (in Chinese)



[24]Hu Y B, Sun G Y, Wang X C. Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants. J Plant Physiol, 2007, 164: 959–968



[25]Zhu H-J(朱会娟), Wang R-G(王瑞刚), Chen S-L(陈少良), Zhang Y-X(张云霞), Li N-Y(李妮亚), Shao J(邵杰). Genotypic differences between Populus euphratica and P. popularis in antioxidative ability and salt tolerance under NaCl stress. Acta Ecol Sin (生态学报), 2007, 27(10): 4113–4121 (in Chinese with English abstract)



[26]Jiang M-Y(蒋明义), Yang W-Y(杨文英), Xu J(徐江), Chen Q-Y(陈巧云). Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmitic stress. Acta Bot Sin (植物学报), 1994, 36(4): 289–295 (in Chinese with English abstract)



[27]Jiang B(姜波). Salt tolerance analysis of a 2-Cys Prx gene from Tamarix Androssowii (柽柳硫氧还蛋白过氧化物酶基因耐盐功能分析). Harbin: Mater Dissertation of Northeast Forestry University, 2011



[28]Kiba A, Nishihara M, Tsukatani N, Nakatsuka T, Kato Y, Yamamura S. A peroxiredoxin Q homolog form gentians is involved in both resistance fungal disease and oxidative stress. Plant Cell Physiol, 2005, 46: 1007–1015



[29]Lu C M, Zhang J H. Role of light in the response of PS IIphotochemistry to salt stress in the canobacterium Spirulina platensis. J Exp Bot, 2000, 51: 911–917



[30]Zhu X G, Wang Q, Zhang Q D, Lu C M, Kuang T Y. Effects of photoinhibition and its recovery on photosynthetic functions of winter wheat under salt stress. Acta Bot Sin, 2001, 43(12): 1250–1254



[31]Bai X-F(柏新富), Zhu J-J(朱建军), Zhang P(张萍), Jiang X-M(蒋小满). The photosynthetic response of atriplex triangularis to salt-shock under varied light intensity. Acta Bot Boreali-Occident Sin (西北植物学报), 2008, 28(9): 1823–1829 (in Chinese with English abstract)



[32]Masojidek J, Hall D O. Salinity and drought stresses are amplified by high irradiance in sorghum. Photosynthetica, 1992, 27: 159–171



[33]Yang C-W(杨春武), Li C-Y(李长有), Yin H-J(尹红娟), Ju M(鞠淼), Shi D-C(石德成). Physiological response of xiaobingmai (Triticum aestivum-Agropyron intermedium) to salt-stress and alkali-stress. Acta Agron Sin (作物学报), 2007, 33(8): 1255–1261 (in Chinese with English abstract)



[34]Vu J C V, Allon L H, Gowes G. Drought stress and elevated CO2 effects on soybean ribulose biphosphate carboxylase activity and canopy photosynt hetic rates. Plant Physiol, 1987, 83: 573–579



[35]Zhang H-H(张会慧), Zhang X-L(张秀丽), Li X(李鑫), Ding J-N(丁俊男), Zhu W-X(朱文旭), Qi F(齐飞), Zhang T(张婷), Tian Y(田野), Sun G-Y(孙广玉). Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics of Morus alba seedlings. Chin J Appl Ecol (应用生态学报), 2012, 23(3): 625–631 (in Chinese with English abstract)



[36]Kuang T-Y(匡廷云). Mechanism an Regulation of Primary Energy Conversinon Process in Photosynthesis (光合作用原初光能转化过程的原理与调控). Nanjing: Jiangsu Science and Technology Press, 2003. pp 204–205



[37]Song X-L(宋旭丽), Hu C-M(胡春梅), Meng J-J(孟静静), Huo X-L(侯喜林), He Q-W(何启伟), Li X-G(李新国). NaCl stress aggravates photoinhibition of photosystem II and photosystem I in Capsicum annuum leaves under high irradiance stress. Chin J Plant Ecol (植物生态学报), 2011, 35(6): 681–686 (in Chinese with English abstract)



[38]Zhang H-H(张会慧), Zhang X-L(张秀丽), Zhu W-X(朱文旭), Xu N(许楠), Li X(李鑫), Yue B-B(岳冰冰), Wang L-Z(王良再), Sun G-Y(孙广玉). Responses of photosystem II in leaves of mulberry to NaCl and Na2CO3 stress. J Beijing For Univ (北京林业大学学报), 2011, 33(6): 15–20 (in Chinese with English abstract)



[39]Zhang H-H(张会慧), Zhang X-L(张秀丽), Xu N(许楠), He G-Q(贺国强), Jin W-W(金微微), Yue B-B(岳冰冰), Li X(李鑫), Sun G-Y(孙广玉). Effects of exogenous CaCl2 on the functions of flue-cured tobacco seedlings leaf photosystem II under drought stress. Chin J Appl Ecol (应用生态学报), 2011, 22(5): 1195–1200 (in Chinese with English abstract)

[1] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[2] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[3] 何宁,王雪扬,曹良子,曹大为,洛育,姜连子,孟英,冷春旭,唐晓东,李一丹,万书明,卢环,程须珍. 光温处理对小豆苗期生理性状及叶绿素合成前体的影响[J]. 作物学报, 2019, 45(3): 460-468.
[4] 万丽丽, 王转茸, 辛强, 董发明, 洪登峰, 杨光圣. BnA7HSP70分子伴侣结合蛋白超表达能够提高甘蓝型油菜耐旱性[J]. 作物学报, 2018, 44(04): 483-492.
[5] 卢霖,董志强*,董学瑞,李光彦. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响[J]. 作物学报, 2016, 42(04): 561-573.
[6] 徐金刚,吕川根,刘莉,吕春芳,马静,夏士健,陈国祥,高志萍. 水稻光氧化突变体812HS的光合和抗氧化特性[J]. 作物学报, 2016, 42(04): 574-582.
[7] 张英华,杨佑明,曹莲,郝杨凡,黄菁,李金鹏,姚得秀,王志敏*. 灌浆期高温对小麦旗叶与非叶器官光合和抗氧化酶活性的影响[J]. 作物学报, 2015, 41(01): 136-144.
[8] 丁秀文,张国良,戴其根,朱青. 1,2,4-三氯苯胁迫对水稻分蘖盛期植株生长和生理特性的影响[J]. 作物学报, 2014, 40(03): 487-496.
[9] 王永军,杨今胜,袁翠平,柳京国,李登海,董树亭. 超高产夏玉米花粒期不同部位叶片衰老与抗氧化酶特性[J]. 作物学报, 2013, 39(12): 2183-2191.
[10] 侯鹏飞,马俊青,赵鹏飞,张欢玲,赵会杰,刘华山,赵一丹,汪月霞. 外源甜菜碱对干旱胁迫下小麦幼苗叶绿体抗氧化酶及psbA基因表达的调节[J]. 作物学报, 2013, 39(07): 1319-1324.
[11] 杨东清,王振林*,尹燕枰,倪英丽,杨卫兵,蔡铁,彭佃亮,徐彩龙,崔正勇,刘铁宁,徐海成. 外源ABA和6-BA对不同持绿型小麦旗叶衰老的影响及其生理机制[J]. 作物学报, 2013, 39(06): 1096-1104.
[12] 刘杨,温晓霞,顾丹丹,郭强,曾爱,李长江,廖允成. 多胺对冬小麦籽粒灌浆的影响及其生理机制[J]. 作物学报, 2013, 39(04): 712-719.
[13] 胡群文,辛霞,陈晓玲,刘旭,卢新雄. 水稻种子室温贮藏的适宜含水量及其生理基础[J]. 作物学报, 2012, 38(09): 1665-1671.
[14] 僧珊珊,王群,张永恩,李潮海,刘天学,赵龙飞,刘怀攀. 外源亚精胺对淹水胁迫玉米的生理调控效应[J]. 作物学报, 2012, 38(06): 1042-1050.
[15] 徐田军, 董志强, 兰宏亮, 裴志超, 高娇, 解振兴. 低温胁迫下聚糖萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响[J]. 作物学报, 2012, 38(02): 352-359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!