欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (3): 469-476.doi: 10.3724/SP.J.1006.2019.84082

• 研究简报 • 上一篇    下一篇

棉花中GhTFL1aGhTFL1c基因的表达及启动子分析

张晓红1,胡根海1,王寒涛2,王聪聪2,魏恒玲2,付远志1,喻树迅2,*()   

  1. 1河南科技学院生命科技学院 / 现代生物育种协同创新中心, 河南新乡 453003
    2中国农业科学院棉花研究所 / 棉花生物学国家重点实验室, 河南安阳 455000
  • 收稿日期:2018-06-20 接受日期:2018-12-24 出版日期:2019-03-12 网络出版日期:2019-01-04
  • 通讯作者: 喻树迅
  • 基金资助:
    本研究由河南省高等学校重点科研项目(18A210002);棉花生物学国家重点实验室开放课题基金资助(CB2018A08)

Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton

Xiao-Hong ZHANG1,Gen-Hai HU1,Han-Tao WANG2,Cong-Cong WANG2,Heng-Ling WEI2,Yuan-Zhi FU1,Shu-Xun YU2,*()   

  1. 1 College of Life Science and Technology, Henan Institute of Science and Technology / Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang 453003, Henan, China
    2 Institute of Cotton Research, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
  • Received:2018-06-20 Accepted:2018-12-24 Published:2019-03-12 Published online:2019-01-04
  • Contact: Shu-Xun YU
  • Supported by:
    This study was supported by the Key Scientific Research Projects of Colleges and Universities in Henan(18A210002);the State Key Laboratory of Cotton Biology Open Fund(CB2018A08)

摘要:

从陆地棉中克隆了磷脂酰乙醇胺结合蛋白GhTFL1aGhTFL1c基因, 并对该基因进行表达分析、启动子预测和启动子活性研究。利用启动子分析软件PlantCARE预测得出, GhTFL1a启动子区域有脱落酸响应元件、干旱诱导的MYB结合位点和顶芽特异表达响应元件等; GhTFL1c启动子区域有乙烯响应元件、干旱诱导的MYB结合位点和水杨酸响应元件。因此, 将pGhTFL1apGhTFL1c分别构建到启动子检测载体pBI121-GUS上形成融合表达载体, 通过烟草瞬时转化检测得出这2个基因的启动子都具有活性。实时荧光定量 PCR分析表明, GhTFL1aGhTFL1c在光周期处理和不同材料的陆地棉(栽培种和半野生种)中表达模式呈相反趋势。GhTFL1a基因受脱落酸(abscisic acid, ABA)、水杨酸(salicylic acid, SA)和盐胁迫诱导, 而GhTFL1c可以响应赤霉素(gibberellin, GA)、SA和ABA胁迫研究结果初步表明, GhTFL1aGhTFL1c可能参与了植物逆境胁迫脱落酸和水杨酸响应的调控, 为在棉花中进一步阐明其功能奠定了基础。

关键词: 陆地棉, GhTFL1a, GhTFL1c, 表达分析, 启动子活性

Abstract:

In this study, we cloned the phosphatidylethanolamine-binding protein GhTFL1a and GhTFL1c genes from Upland cotton, and analyzed their expression and promoter activity. The results of promoter structure prediction revealed that GhTFL1a promoter contains abscisic acid (ABA) responsiveness elements, drought-induced MYB binding sites and shoot-specific expression and light responsiveness elements, and the promoter region of GhTFL1c contains ethylene-responsive element, drought-induced MYB binding sites and salicylic acid (SA) responsiveness elements. Thus, we constructed the fusion vector pBI121-GhTFL1a-GUS and pBI121-GhTFL1c-GUS, respectively. Transient transformation of tobacco showed that both promoters had the activity to drive the expression of target gene GUS. Quantitative Real-time PCR result indicated that the expression profile of GhTFL1a and GhTFL1c was opposite during different photoperiod treatments of cultivated and semi-wild cotton. Meanwhile, the expression of GhTFL1a was induced by ABA, SA, and salt (NaCl), while GhTFL1c expression was induced by SA, gibberellin (GA) and ABA. Taken together, the results suggest that GhTFL1a and GhTFL1c might be involved in the regulation of response to abiotic stresses (SA and ABA), which could provide a solid foundation for further function identification.

Key words: upland cotton, GhTFL1a, GhTFL1c, expression analysis, promoter activity

表1

本研究所用引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Purpose
GhTFL1a-up TCCCTGAGCCACTTACCGTTG 荧光定量PCR qRT-PCR
GhTFL1a-down AAGCGTCTCTCATGTCGTTG 荧光定量PCR qRT-PCR
GhTFL1c-up TCATCTGTTGCCACCAAACCT 荧光定量PCR qRT-PCR
GhTFL1c-down TTCCCTTCCAAACGTGGCATC 荧光定量PCR qRT-PCR
GhACTIN-up ATCCTCCGTCTTGACCTTG 荧光定量PCR qRT-PCR
GhACTIN-down TGTCCGTCAGGCAACTCAT 荧光定量PCR qRT-PCR
GhTFL1a-up ATGTCAAGGGTCCCTGAG 基因克隆 Gene cloning
GhTFL1a-down TTATCTTCTTCTTGCAGCAGTTTC 基因克隆 Gene cloning
GhTFL1c-up ATGGGAGAGCCTCTCATTGTT 基因克隆 Gene cloning
GhTFL1c-down TTAGCGTCTCCTTGCAGCAGT 基因克隆 Gene cloning
pGhTFL1a-up AAGGAATATAGAGCACAACA 启动子克隆 Promoter cloning
pGhTFL1a-down GATGAACAAGACGATGTGTAT 启动子克隆 Promoter cloning
pGhTFL1c-up AGTTTAGATTCTTGTGCGAT 启动子克隆 Promoter cloning
pGhTFL1c-down TCTTGATGACAGTGAATGAA 启动子克隆 Promoter cloning

图1

GhTFL1a和GhTFL1c的进化树及氨基酸多重序列比对 A: 进化树分析; B: 氨基酸多重序列比对。*代表氨基酸完全一致, AtBFT、AtTFL1和AtATC序列号分别为NM_125597、U77674和NM_128315, GhTFL1a和GhTFL1c在陆地棉中序列号分别为Gh_A11G0088和Gh_D04G0971。"

图2

GhTFL1a和GhTFL1c在光周期处理试验中的表达模式分析 A和B为GhTFL1a和GhTFL1c基因在栽培种“中棉所36” 中的表达; C和D为GhTFL1a和GhTFL1c基因在半野生种“尖斑棉”中的表达。误差棒为3次重复的标准差。"

图3

GhTFL1a和GhTFL1c在栽培种和半野生种中表达模式分析 横坐标代表取样时期, 分别为长日照子叶、一叶、二叶、三叶、四叶、五叶以及短日照三叶、四叶和五叶。"

表2

陆地棉基因GhTFL1a和GhTFL1c启动子顺式作用元件预测"

基因
Gene
元件
Element
序列
Sequence (5′-3′)
功能
Function
GhTFL1a CE3 GACGCGTGTC ABA和VP1响应元件 ABA and VP1 responsiveness element
MBS TAACTG 干旱诱导的MYB结合位点 MYB binding site involved in drought inducibility
Nodule-site2 CTTAAATTATTTATTT 节结特异因子结合位点 Nodolue specific factor binding site
as-2-box GATAatGATG 顶芽特异表达响应元件 Shoot specific expression element
as-2-box GATAatGATG 顶芽特异表达响应元件 Shoot specific expression element
Circadian CAANNNNATC 昼夜节律控制元件 Circadian rhythms element
GhTFL1c ERE ATTTCAAA 乙烯响应元件 Ethylene responsiveness element
ERE ATTTCAAA 乙烯响应元件 Ethylene responsiveness element
MBS CAACTG 干旱诱导的MYB结合位点 MYB binding site involved in drought inducibility
circadian CAANNNNATC 昼夜节律控制元件 Circadian rhythms element
TCA-element TCAGAAGAGG 水杨酸响应元件 Salicylic acid responsiveness element
TCA-element CAGAAAAGGA 水杨酸响应元件 Salicylic acid responsiveness element

图4

棉花水培苗经过处理后24 h内GhTFL1a基因表达量变化 A: 水杨酸; B: 脱落酸; C: 赤霉素; D: NaCl。误差棒为3次重复的标准差。"

图5

棉花水培苗经过处理后24小时内GhTFL1c基因表达量变化 A: 水杨酸; B: 赤霉素; C: 脱落酸; D: NaCl。误差棒为3次重复的标准差。"

图6

烟草瞬时表达GhTFL1a和GhTFL1c的启动子 A: 阳性对照pBI121; B: pGhTFL1a∷GUS; C: pGhTFL1c∷GUS; D: 阴性对照。"

[1] 董承光, 王娟, 周小凤, 马晓梅, 李生秀, 王旭文, 肖光顺, 李保成 . 新疆早熟陆地棉早熟性状的遗传分析. 西北农业学报, 2014,23(12):96-101.
doi: 10.7606/j.issn.1004-1389.2014.12.015
Dong C G, Wang J, Zhou X F, Ma X M, Li S X, Wang X W, Xiao G S, Li B C . Inheritance of earliness traits in xinjiang early-maturity upland cotton ( G. hirsutum L.). Acta Agric Boreali-occident Sin, 2014,13(12):96-101 (in Chinese with English abstract).
doi: 10.7606/j.issn.1004-1389.2014.12.015
[2] 喻树迅, 王寒涛, 魏恒玲, 宿俊吉 . 棉花早熟性研究进展及其应用. 棉花学报, 2017,29:1-10.
doi: 10.11963/1002-7807.ysxysx.20170825
Yu S X, Wang H T, Wei H L, Su J J . Research progress and application of early maturity in upland cotton. Cotton Sci, 2017,29:1-10 (in Chinese with English abstract).
doi: 10.11963/1002-7807.ysxysx.20170825
[3] Chautard H, Jacquet M, Schoentgen F, Bureaud N, Benedetti H . Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae . Eukary Cell, 2004,3:459-470.
doi: 10.1128/EC.3.2.459-470.2004 pmid: 15075275
[4] Hengst U, Albrecht H, Hess D, Monard D . The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors . J Biol Chem, 2001,276:535-540.
doi: 10.1074/jbc.M002524200 pmid: 11034991
[5] Banfield M J, Barker J J, Perry A C, Brady R L . Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction . Structure, 1998,6:1245-1254.
doi: 10.1016/S0969-2126(98)00125-7 pmid: 9782050
[6] Ryu J Y, Park C M, Seo P J . The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Mol Cells, 2011,32:295-303.
doi: 10.1007/s10059-011-0112-9 pmid: 3887636
[7] Hanzawa Y, Money T, Bradley D . A single amino acid converts a repressor to an activator of flowering . Proc Natl Acad Sci USA, 2005,102:7748-7753.
doi: 10.1073/pnas.0500932102 pmid: 15894619
[8] Conti L, Bradley D . TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell, 2007,19:767-778.
doi: 10.1105/tpc.106.049767 pmid: 17369370
[9] Hanano S, Goto K . Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell, 2011,23:3172-3184.
doi: 10.1105/tpc.111.088641
[10] Serrano-Mislata A, Fernandez-Nohales P, Domenech M J, Hanzawa Y, Bradley D, Madueno F . Separate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity. Development, 2016,143:3315-3327.
[11] Liu X, Zhang J, Abuahmad A, Franks R G, Xie D Y, Xiang Q Y . Analysis of two TFL1 homologs of dogwood species ( Cornus L.) indicates functional conservation in control of transition to flowering. Planta, 2016,243:1129-1141.
doi: 10.1007/s00425-016-2466-x pmid: 26825444
[12] Rantanen M, Kurokura T, Jiang P, Mouhu K, Hytonen T . Strawberry homologue of terminal flower1 integrates photoperiod and temperature signals to inhibit flowering . Plant J, 2015,82:163-173.
doi: 10.1111/tpj.12809 pmid: 25720985
[13] Si Z F, Liu H, Zhu J K, Chen J D, Wang Q, Fang L, Gao F K, Tian Y, Chen Y L, Chang L J, Liu B L, Han Z G, Zhou B L, Hu Y, Huang X Z, Zhang T Z . Mutation of SELF-PRUNING homologs in cotton promotes short-branching plant architecture . J Exp Bot, 2018,69:2543-2553.
doi: 10.1093/jxb/ery093 pmid: 29547987
[14] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X . Genome sequence of cultivated upland cotton ( Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530.
doi: 10.1038/nbt.3208 pmid: 25893780
[15] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M , Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207 pmid: 25893781
[16] Sparkes I A, Runions J, Kearns A, Hawes C . Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants . Nat Protoc, 2006,1:2019-2025.
doi: 10.1038/nprot.2006.286 pmid: 17487191
[17] Hori K, Matsubara K, Yano M . Genetic control of flowering time in rice: integration of Mendelian genetics and genomics . Theor Appl Genet, 2016,129:2241-2252.
doi: 10.1007/s00122-016-2773-4
[18] 东锐, 院海英, 顾超, 郑银英, 黄先忠, 崔百明 . 棉花GhFTL1基因的克隆及初步功能分析. 棉花学报, 2011,23:515-521.
doi: 10.3969/j.issn.1002-7807.2011.06.005
Dong R, Yuan H Y, Gu C, Zheng Y Y, Huang X Z, Cui B M . Cloning and primary analysis of the function of GhFTL1 gene in cotton(Gossypium hirsutum L.). Cotton Sci, 2011,23:515-521 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-7807.2011.06.005
[19] 吴嫚, 范术丽, 宋美珍, 庞朝友, 喻树迅 . 棉花GhCO基因的克隆与表达分析. 棉花学报, 2010,22:387-392.
doi: 10.3969/j.issn.1002-7807.2010.05.001
Wu M, Fan S L, Song M Z, Pang C Y, Yu S X . Cloning and expression analysis of GhCO gene in Gossypium hirsutum L. Cotton Sci, 2010,22:387-392 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-7807.2010.05.001
[20] 张文香, 庞朝友, 范术丽, 宋美珍, 魏恒玲, 喻树迅 . 棉花SVP-like基因GhMADS29的克隆与表达分析. 安徽农业科学, 2015,43(15):28-31.
Zhang W X, Pang C Y, Fan S L, Song M Z, Wei H L, Yu S X . Molecular cloning and expression analysis of SVP-like gene GhMADS29 from Gossypium hirsutum L. J Anhui Agric Sci, 2015,43(15):28-31 (in Chinese with English abstract).
[21] Jeong S, Clark S E . Photoperiod regulates flower meristem development in Arabidopsis thaliana. Genetics, 2005,169:907-915.
doi: 10.1534/genetics.104.033357
[22] Mengin V, Pyl E T, Alexandre M T, Sulpice R, Krohn N, Encke B, Stitt M . Photosynthate partitioning to starch in Arabidopsis thaliana is insensitive to light intensity but sensitive to photoperiod due to a restriction on growth in the light in short photoperiods. Plant Cell Environ, 2017,40:2608-2627.
doi: 10.1111/pce.13000 pmid: 28628949
[23] Zhang X H, Wang C C, Pang C Y, Wei H L, Wang H T, Song M Z, Fan S L, Yu S S . Characterization and functional analysis of PEBP family genes in upland cotton ( Gossypium hirsutum L.). PLoS One, 2016,11:e0161080.
doi: 10.1371/journal.pone.0161080 pmid: 725
[24] Ryu J Y, Lee H J, Seo P J, Jung J H, Ahn J H, Park C M . The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Mol Plant, 2014,7:377-387.
doi: 10.1093/mp/sst114 pmid: 23935007
[1] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[2] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[3] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[4] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[5] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[6] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[7] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[8] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[9] 朱国忠,张芳,付洁,李乐晨,牛二利,郭旺珍. 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价[J]. 作物学报, 2018, 44(11): 1631-1639.
[10] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
[11] 沈超,李定国,聂以春,林忠旭. 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL[J]. 作物学报, 2017, 43(12): 1733-1745.
[12] 吕有军,杨卫军,赵兰杰,姚金波,陈伟,李燕,张永山. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479.
[13] 杨延龙,肖飞,徐守振,王宇轩,左文庆,梁福斌,张旺锋. 新疆早熟陆地棉品种更替产量提高过程中冠层结构特征的演变[J]. 作物学报, 2017, 43(10): 1518-1526.
[14] 陈旭升,狄佳春,周向阳,赵亮. 陆地棉高秆突变体的激素变化与Tp基因的染色体定位[J]. 作物学报, 2017, 43(06): 935-939.
[15] 朱守鸿,赵兰杰,刘永昌,李艳军,张新宇,孙杰. 陆地棉微管结合蛋白CLASP家族基因的鉴定及表达分析[J]. 作物学报, 2017, 43(03): 389-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!