欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 982-992.doi: 10.3724/SP.J.1006.2019.82057

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于非线性主成分分析的绿色超级稻品种综合评价

纪龙,申红芳,徐春春,陈中督,方福平()   

  1. 中国水稻研究所, 浙江杭州 310006
  • 收稿日期:2018-11-22 接受日期:2019-04-15 出版日期:2019-07-12 网络出版日期:2019-04-24
  • 通讯作者: 方福平
  • 基金资助:
    本研究由国家高技术研究发展计划项目(2014AA10A605);浙江省自然科学基金青年基金项目(LQ18G030013);财政部-农业部基本科研业务费项目(2017RG007)

Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis

JI Long,SHEN Hong-Fang,XU Chun-Chun,CHEN Zhong-Du,FANG Fu-Ping()   

  1. China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
  • Received:2018-11-22 Accepted:2019-04-15 Published:2019-07-12 Published online:2019-04-24
  • Contact: Fu-Ping FANG
  • Supported by:
    This study was supported by the National High Technology Research and Development Program of China(2014AA10A605);the Natural Science Foundation of Zhejiang Province of China(LQ18G030013);the Fundamental Research Funds of Ministry of Finance and Ministry of Agriculture and Rural Affairs of China(2017RG007)

摘要:

应用绿色超级稻被认为是推动水稻生产可持续发展的重要途径之一, 已成为全球水稻育种的主要目标。目前关于绿色超级稻品种综合评价的研究鲜有报道。本文围绕“少打农药、少施化肥、节水抗旱、优质高产”的理念, 从技术性、经济性、生态性和社会性4个维度构建了绿色超级稻品种综合评价指标体系, 为水稻及其他作物品种的综合评价、品种选育及推广应用提供了有益的研究思路。在此基础上引入一种非线性主成分分析法——对数主成分分析, 利用大田试验数据及不同评价方法的对比分析表明, 对数主成分分析法符合绿色超级稻的育种理念, 具有较强的合理性, 可作为一种有效的水稻品种综合评价方法。

关键词: 绿色超级稻, 综合评价, 指标体系, 非线性主成分分析

Abstract:

Application of green super rice (GSR) is regarded as one of the important ways to realize sustainable development of rice production, and has become a major goal of the rice breeding around the world. However, there are few literatures on comprehensive evaluation of GSR varieties. The GSR concept is the development of varieties with insect and disease resistance, high N- and P-use efficiency, drought resistance, high grain yield and superior quality. Based on the GSR concept, we establish a comprehensive evaluation index system of GSR varieties in four dimensions, including technical indicators, economic indicators, ecological indicators and social indicators. This index system should shed light on a new perspective for evaluation of crop varieties, variety breeding as well as the application and extension of new crop varieties. Further, a nonlinear principal component analysis, namely logarithmic principal component analysis, was introduced into the comprehensive evaluation of GSR varieties. Based on field experimental data with a comparative analysis by different methods, we revealed that the logarithmic principal component analysis is feasible and reasonable for comprehensive evaluation of GSR varieties.

Key words: green super rice, comprehensive evaluation, index system, nonlinear principal component analysis

表1

绿色超级稻品种综合评价指标体系"

一级指标
First class indicator
二级指标
Second class indicator
指标说明
Definition of the indicators
技术性指标 有效穗 EP (x1) 单位面积有效穗数(m-2)
Technical indicator Effective panicles per square meter (m-2)
结实率 SSR (x2) 水稻结实率(%)
Seed-setting rate of rice (%)
抗倒伏性 LR (x3) 1=很差, 2=差, 3=一般, 4=较强, 5=很强
1=very poor, 2=poor, 3=general, 4=strong, 5=very strong
抗病虫性 RID (x4) 对主要病虫害的抗性(1=高感, 2=感, 3=中感, 4=中抗, 5=抗, 6=高抗)
Resistance to major pests and diseases (1=high susceptible, 2=susceptible, 3=moderate susceptible, 4=moderate resistant, 5=resistant, 6=high resistant)
抗非生物逆境性 AST (x5) 对干旱、高低温、盐碱等非生物胁迫的抗性(1=很差, 2=差, 3=一般, 4=较强, 5=很强)
Resistance to abiotic stress (1=very poor, 2=poor, 3=general, 4=strong, 5=very strong)
生态适应性 EA (x6) 在不同生长环境、不同年份的稳产表现, 用变异系数表征 (%)
Yield stability of rice in different growing condition across years, represented by coefficient of variation (%)
一级指标
First class indicator
二级指标
Second class indicator
指标说明
Definition of the indicators
经济性指标 单产 Y (x7) 每公顷产量(kg hm-2)
Economic indicator Yield per hectare (kg hm-2)
成本利润率 RPC (x8) 每公顷成本利润率(%)
Rate of profit to cost per hectare (%)
整精米率 HR (x9) 整精米占净稻谷式样或精米式样的质量分数(%)
The ratio of head rice to the overall rice sample (%)
垩白度 CD (x10) 垩白米的垩白面积总和占式样整精米粒面积总和的百分率(%)
The ratio of chalkiness area of chalky rice to the total area of the head rice for the overall rice sample (%)
直链淀粉含量 AC (x11) 试样所含直链淀粉的质量占式样总质量的百分率(%)
The ratio of quality of amylose content to the total quality of the overall sample rice (%)
透明度 T (x12) 整精米籽粒的透明程度, 以稻米的相对透光率大小表示
Translucency degree of the head rice, represented by the relative transmittance of rice
生态性指标 氮肥利用率 NUE (x13) 氮肥偏生产力(籽粒产量/施氮量, kg kg-1)
Ecological indicator Nitrogen partial factor productivity (grain yield/nitrogen application level, kg kg-1)
磷肥利用率 PUE (x14) 磷肥偏生产力(籽粒产量/施磷量, kg kg-1)
Phosphate partial factor productivity (grain yield/phosphate application level, kg kg-1)
钾肥利用率 PUE2 (x15) 钾肥偏生产力(籽粒产量/施钾量, kg kg-1)
Potash partial factor productivity (grain yield/potash application level, kg kg-1)
水分利用率 WUE (x16) 籽粒产量/(降雨量-灌水量-排水量)(kg m-3)
Grain yield/(precipitation-irrigation-drainage) (kg m-3)
社会性指标 农药残留 PR (x17) 稻米中的农药残留量
Social indicator Amount of pesticide residues in rice
重金属含量 HM (x18) 稻米中的重金属镉含量(mg kg-1)
Cadmium content in rice (mg kg-1)

表2

特征值与方差贡献率"

特征值
Eigenvalue
方差贡献率
Variance contribution rate
累计方差贡献率
Accumulate variance contribution rate
主成分1 Principal component 1 2.786 0.310 0.310
主成分2 Principal component 2 1.725 0.192 0.501
主成分3 Principal component 3 1.393 0.155 0.656
主成分4 Principal component 4 1.170 0.130 0.786
主成分5 Principal component 5 0.782 0.087 0.873
主成分6 Principal component 6 0.630 0.070 0.943
主成分7 Principal component 7 0.311 0.035 0.977
主成分8 Principal component 8 0.199 0.022 0.999

表3

主成分载荷矩阵"

主成分1
Principal component 1
主成分2
Principal component 2
主成分3
Principal component 3
主成分4
Principal component 4
有效穗 EP (ln X1) 0.474 0.144 -0.139
结实率 SSR (ln X2) 0.467 -0.305
抗倒伏性LR (ln X3) 0.420 -0.184 -0.173 -0.145
抗病虫性RID (ln X4) 0.109 0.523 -0.314 0.266
单产Y (ln X7) 0.449 0.306 -0.333
整精米率HR (ln X9) -0.182 0.363 0.115 0.679
垩白度CD (ln X10) 0.589 -0.340 -0.153
直链淀粉含量AC (ln X11) 0.103 0.571 -0.511
氮素利用效率NUE (ln X13) 0.347 0.553 0.375

表4

绿色超级稻品种综合评价结果"

品种
Variety
综合得分
Score
排序1
Rank 1
排序2
Rank 2
品种
Variety
综合得分
Score
排序1
Rank 1
排序2
Rank 2
武运粳30 Wuyungeng 30 1.027 1 1 南粳9108 Nangeng 9108 0.978 8 2
甬优2640 Yongyou 2640 1.017 2 6 淮稻13 Huaidao 13 0.976 9 8
宁粳5号 Ninggeng 5 1.011 3 9 镇稻10号 Zhendao 10 0.965 10 5
武运粳24 Wuyungeng 24 1.007 4 4 扬粳4038 Yanggeng 4038 0.958 11 12
连粳7号Liangeng 7 1.003 5 11 宁粳1号 Ninggeng 1 0.888 12 10
甬优1540 Yongyou 1540 0.994 6 3 镇稻16 Zhendao 16 0.850 13 13
淮稻5号Huaidao 5 0.982 7 7

图1

绿色超级稻候选品种的聚类分析树状图 Zhendao 16: 镇稻16; Liangeng 7: 连粳7号; Wuyungeng 24: 武运粳24; Ninggeng 5: 宁粳5号; Zhendao 10: 镇稻10号; Huaidao 13: 淮稻13; Yanggeng 4038: 扬粳4038; Wuyungeng 30: 武运粳30; Nangeng 9108: 南粳9108; Ninggeng 1: 宁粳1号; Yongyou 1540: 甬优1540; Yongyou 2640: 甬优2640; Huaidao 5: 淮稻5号。"

[1] 余四斌, 熊银, 肖景华, 罗利军, 张启发 . 杂交稻与绿色超级稻. 科学通报, 2016,61:3797-3803.
Yu S B, Xiong Y, Xiao J H, Luo L J, Zhang Q F . Hybrid rice and green super rice. Chin Sci Bull, 2016,61:3797-3803 (in Chinese with English abstract).
[2] Elert E . Rice by the numbers: a good grain. Nature, 2014,514:S50-S51.
doi: 10.1038/514S50a
[3] Zhang Q F . Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007,104:16402-16409.
doi: 10.1073/pnas.0708013104
[4] 彭张林, 张强, 杨善林 . 综合评价理论与方法研究综述. 中国管理科学, 2015,23(增刊1):245-256.
Peng Z L, Zhang Q, Yang S L . Overview of comprehensive evaluation theory and methhodology. Chin J Manage Sci, 2015,23(Suppl 1):245-256 (in Chinese with English abstract).
[5] 邱东, 汤光华 . 对综合评价几个阶段的再思考. 统计教育, 1997, ( 4):25-27.
Qiu D, Tang G H . Rethink of stages of comprehensive evaluation. Statist Education, 1997, ( 4):25-27 (in Chinese).
[6] 陈衍泰, 陈国宏, 李美娟 . 综合评价方法分类及研究进展. 管理科学学报, 2004,7(2):69-79.
Chen Y T, Chen G H, Li M J . Classification and research advancement of comprehensive evaluation methods. J Manage Sci China, 2004,7(2):69-79 (in Chinese with English abstract).
[7] 陈国宏, 李美娟 . 基于方法集的综合评价方法集化研究. 中国管理科学, 2004,12(1):102-106.
Chen G H, Li M J . The research on the comprehensive evaluation methodintegration based on method set. Chin J Manage Sci, 2004,12(1):102-106 (in Chinese with English abstract).
[8] 陈国宏, 李美娟 . 组合评价收敛性验证的计算机模拟实验. 系统工程理论与实践, 2005,25(5):74-82.
Chen G H, Li M J . The simulation experiment on verifying the convergence of combination evaluation. Syst Eng-Theor Practice, 2005,25(5):74-82 (in Chinese with English abstract).
[9] 郭亚军, 易平涛 . 一种基于整体差异的客观组合评价法. 中国管理科学, 2006,14(3):60-64.
Guo Y J, Yi P T . Whole diversity-based reasoning for objective combined evaluation. Chin J Manage Sci, 2006,14(3):60-64 (in Chinese with English abstract).
[10] 徐强 . 组合评价法研究. 江苏统计, 2002, ( 10):10-12.
Xu Q . Research on combined evaluation. Jiangsu Statist, 2002, ( 10):10-12 (in Chinese).
[11] 苏为华 . 我国多指标综合评价技术与应用研究的回顾与认识. 统计研究, 2012,29(8):98-107.
Su W H . Review and recognition on the research of multi-indicators comprehensive evaluation in China. Statistical Res, 2012,29(8):98-107 (in Chinese with English abstract).
[12] 杨瑰丽, 杨美娜, 李帅良, 曲志恒, 黄明, 陈志强, 王慧 . 水稻萌芽期抗旱指标筛选与抗旱性综合评价. 华南农业大学学报, 2015,36(2):1-5.
Yang G L, Yang M N, Li S L, Qu Z H, Huang M, Chen Z Q, Wang H . Screening and comprehensive evaluation of drought resistance indices of rice at germination stage. J South China Agric Univ, 2015,36(2):1-5 (in Chinese with English abstract).
[13] 程建峰, 潘晓云, 刘宜柏, 戴廷波, 曹卫星 . 水稻抗旱性鉴定的形态指标. 生态学报, 2005,25:3117-3125.
Cheng J F, Pan X Y, Liu Y B, Dai T B, Cao W X . Morphological indexes of drought resistance identification in rice. Acta Ecol Sin, 2005,25:3117-3125 (in Chinese with English abstract).
[14] 蔡建国, 章毅, 孙欧文, 杨倩倩 . 绣球抗旱性综合评价及指标体系构建. 应用生态学报, 2018,29:3175-3182.
Cai J G, Zhang Y, Sun O W, Yang Q Q . Comprehensive evaluation and construction of drought resistance index system in Hydrangea macrophylla. Chin J Appl Ecol, 2018,29:3175-3182 (in Chinese with English abstract).
[15] 韩飞, 诸葛玉平, 娄燕宏, 王会, 张乃丹, 何伟, 晁赢 . 63份谷子种质的耐盐综合评价及耐盐品种筛选. 植物遗传资源学报, 2018,19:685-693.
Han F, Zhu-Ge Y P, Lou Y H, Wang H, Zhang N D, He W, Chao Y . Evaluation of salt tolerance and screening for salt tolerant accessions of 63 foxtail millet germplasm. J Plant Genet Resour, 2018,19:685-693 (in Chinese with English abstract).
[16] 张海艳, 赵海军 . 不同品种玉米萌发期和苗期耐盐性综合评价. 玉米科学, 2016,24(5):61-67.
Zhang H Y, Zhao H J . Comprehensive evaluation of salt tolerance of different corn varieties at the germination and seedling stages. J Maize Sci, 2016,24(5):61-67 (in Chinese with English abstract).
[17] 苏李维, 李胜, 马绍英, 戴彩虹, 时振振, 唐斌, 赵生琴, 蒲彦涛 . 葡萄抗寒性综合评价方法的建立. 草业学报, 2015,24(3):70-79.
Su L W, Li S, Ma S Y, Dai C H, Shi Z Z, Tang B, Zhao S Q, Pu Y T . A comprehensive assessment method for cold resistance of grape vines. Acta Pratacult Sin, 2015,24(3):70-79 (in Chinese with English abstract).
[18] 刘海卿, 孙万仓, 刘自刚, 武军艳, 钱武, 王志江, 郭仁迪, 马骊, 侯献飞, 刘林波 . 北方寒旱区白菜型冬油菜抗寒性与抗旱性评价及其关系. 中国农业科学, 2015,48:3743-3756.
Liu H Q, Sun W C, Liu Z G, Wu J Y, Qian W, Wang Z J, Guo R D, Ma L, Hou X F, Liu L B . Evaluation of drought resistance and cold resistance and research of their relationship at seedling stage of winter rapeseed (Brassica campestris L.) in cold and arid regions in North China. Sci Agric Sin, 2015,48:3743-3756 (in Chinese with English abstract).
[19] 王树刚, 王振林, 王平, 王海伟, 李府, 黄玮, 武玉国, 尹燕枰 . 不同小麦品种对低温胁迫的反应及抗冻性评价. 生态学报, 2011,31:1064-1072.
Wang S G, Wang Z L, Wang P, Wang H W, Li F, Huang W, Wu Y G, Yin Y P . Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress. Acta Ecol Sin, 2011,31:1064-1072 (in Chinese with English abstract).
[20] 于秋竹, 孔宇, 陈东升, 解保胜, 徐正进 . 基于主成分及聚类分析的黑龙江省水稻产量与品质的综合评价. 沈阳农业大学学报, 2015,46:219-224.
Yu Q Z, Kong Y, Chen D S, Xie B S, Xu Z J . Comprehensive evaluation of yield and quality of rice based on principal component and cluster analysis in Heilongjiang province. J Shenyang Agric Univ, 2015,46:219-224 (in Chinese with English abstract).
[21] 陈晨, 龚海青, 张敬智, 徐寓军, 郜红建 . 不同基因型水稻苗期氮营养特性差异及综合评价. 中国生态农业学报, 2016,24:1347-1355.
Chen C, Gong H Q, Zhang J Z, Xu Y J, Gao H J . Evaluation of nitrogen nutrition characteristics of different rice cultivars at seedling stage. Chin J Eco-agric, 2016,24:1347-1355 (in Chinese with English abstract).
[22] 王雪, 崔少雄, 孙志梅, 穆国俊, 崔顺立, 王鹏超, 刘立峰 . 基于生物量和养分累积量的花生品种生态适应性评价. 应用生态学报, 2015,26:2023-2029.
Wang X, Cui S X, Sun Z M, Mu G J, Cui S L, Wang P C, Liu L F . Ecological adaptability evaluation of peanut cultivars based on biomass and nutrient accumulatio. Chin J Appl Ecol, 2015,26:2023-2029 (in Chinese with English abstract).
[23] 钞小静, 任保平 . 中国经济增长质量的时序变化与地区差异分析. 经济研究, 2011,46(4):26-40.
Chao X J, Ren B P . The fluctuation and regional difference of quality of economic growth in China. Econ Res J, 2011,46(4):26-40 (in Chinese with English abstract).
[24] 叶双峰 . 关于主成分分析做综合评价的改进. 数理统计与管理, 2001,20(2):52-55.
Ye S F . The application and consideration about principal component analysis. J Appl Statist Manage, 2001,20(2):52-55 (in Chinese with English abstract).
[25] 邱东 . 多指标综合评价:方法论反思. 经济统计学(季刊), 2013, ( 1):39-47.
Qiu D . Multi-index comprehensive evaluation: A methodological reflection. China Econ Statist Q, 2013, ( 1):39-47 (in Chinese with English abstract).
[26] 张启发 . 未来作物育种对绿色技术的需求. 华中农业大学学报(社会科学版), 2014,33(6):10-15.
Zhang Q F . Demands for green technologies in future plant breeding. J Huazhong Agric Univ, 2014,33(6):10-15 (in Chinese with English abstract).
[27] 中华人民共和国农业部. 农业行业标准: NY/T 83-2017. 北京: 中国农业出版社, 2017.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Agricultural standard: NY/T 83-2017. Beijing: China Agriculture Press, 2017 (in Chinese).
[28] 程式华 . 2017年中国水稻产业发展报告. 北京: 中国农业科学技术出版社, 2017. pp 169-176.
Cheng S H. Development Report of China’s Rice Industry in 2017. Beijing: China Agricultural Science and Technology Press, 2017. pp 169-176(in Chinese).
[29] FAOSTAT. Fertilizer by Nutrient. (2018-08-28)[2018-03-27]. .
[30] 王忠, 顾蕴洁, 陈刚, 熊飞, 李运祥 . 稻米的品质和影响因素. 分子植物育种, 2003,1:231-241.
Wang Z, Gu Y J, Chen G, Xiong F, Li Y X . Rice quality and its affecting factors. Mol Plant Breed, 2003,1:231-241 (in Chinese with English abstract).
[31] Gungor Z, Serhadlioglu G, Kesen S E . A fuzzy AHP approach to personnel selection problem. Appl Soft Comput, 2009,9:641-646.
doi: 10.1016/j.asoc.2008.09.003
[32] Rao C R . The use and interpretation of principal component analysis in applied research. Indian J Statist, Ser A(1961-2002), 1964,26:329-358.
[33] 蔡艺 . 主成分方法在综合评价中的应用. 中国统计, 2005, ( 2):24-26.
Cai Y . Application of principal component analysis in comprehensive evaluation. China Statist, 2005, ( 2):24-26 (in Chinese).
[34] 邱东 . 多指标综合评价方法. 统计研究, 1990,7(6):43-51.
Qiu D . Multi-index comprehensive evaluation methods. Statist Res, 1990,7(6):43-51 (in Chinese).
[35] 叶明确, 杨亚娟 . 主成分综合评价法的误区识别及其改进. 数量经济技术经济研究, 2016,33(10):142-153.
Ye M Q, Yang Y J . Erroneous zone identification and improvement of synthesis evaluation based on principal component analysis. J Quantitat & Tech Econom, 2016,33(10):142-153 (in Chinese with English abstract).
[36] 陈军才 . 主成分与因子分析中指标同趋势化方法探讨. 统计与信息论坛, 2005,20(2):19-23.
Chen J C . Discussion of the same trending methods of indices in principal component analysis and factor analysis. Statist & Inform Forum, 2005,20(2):19-23 (in Chinese with English abstract).
[37] 林海明 . 对主成分分析法运用中十个问题的解析. 统计与决策, 2007, ( 16):16-18.
Lin H M . Ten questions in application of principal component analysis. Statist & Decision, 2007, ( 16):16-18 (in Chinese).
[38] 叶宗裕 . 关于多指标综合评价中指标正向化和无量纲化方法的选择. 浙江统计, 2003, ( 4):24-25.
Ye Z Y . Methods for handling the indexes positively and non-dimensionally in comprehensive evaluations. Zhejiang Statist, 2003, ( 4):24-25 (in Chinese).
[39] 胡永宏 . 对统计综合评价中几个问题的认识与探讨. 统计研究, 2012,29(1):26-30.
Hu Y H . Understanding and discussion of some problems in statistical synthesis evaluation. Statist Res, 2012,29(1):26-30 (in Chinese with English abstract).
[40] 李靖华, 郭耀煌 . 主成分分析用于多指标评价的方法研究: 主成分评价. 管理工程学报, 2002,16(1):39-43.
Li J H, Guo Y H . Principal component evaluation: a multivariate evaluate method expand from principal component analysis. J Ind Eng & Eng Manage, 2002,16(1):39-43 (in Chinese with English abstract).
[41] 林海明, 杜子芳 . 主成分分析综合评价应该注意的问题. 统计研究, 2013,30(8):25-31.
Lin H M, Du Z F . Some problems in comprehensive evaluation in the principal component analysis. Statist Res, 2013,30(8):25-31 (in Chinese with English abstract).
[1] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[2] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[3] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[4] 郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元,崔翠. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430.
[5] 崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805.
[6] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[7] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[8] 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603.
[9] 许阳东,朱宽宇,章星传,王志琴,杨建昌. 绿色超级稻品种的农艺与生理性状分析[J]. 作物学报, 2019, 45(1): 70-80.
[10] 王倩,崔翠,叶桑,崔明圣,赵愉风,林呐,唐章林,李加纳,周清元. 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价[J]. 作物学报, 2018, 44(8): 1169-1184.
[11] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
[12] 李龙,毛新国,王景一,昌小平,柳玉平,景蕊莲. 小麦种质资源抗旱性鉴定评价[J]. 作物学报, 2018, 44(7): 988-999.
[13] 余斌,杨宏羽,王丽,刘玉汇,白江平,王蒂,张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价[J]. 作物学报, 2018, 44(01): 63-74.
[14] 汪灿,周棱波,张国兵,张立异,徐燕,高旭,姜讷,邵明波. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2017, 43(09): 1381-1394.
[15] 张楚,张永清,路之娟,刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标[J]. 作物学报, 2017, 43(08): 1205-1215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!