欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 969-981.doi: 10.3724/SP.J.1006.2019.84175

• 综述 •    下一篇

乙烯的生物合成与信号及其对种子萌发和休眠的调控

宋松泉1,3,*(),刘军2,徐恒恒2,张琪2,黄荟3,伍贤进3   

  1. 1 中国科学院植物研究所, 北京100093
    2 广东省农业科学院农业生物基因研究中心, 广东广州 510640
    3 怀化学院民族药用植物资源研究与利用湖南省重点实验室 / 生物与食品工程学院, 湖南怀化 418008
  • 收稿日期:2018-11-22 接受日期:2019-01-19 出版日期:2019-07-12 网络出版日期:2019-04-09
  • 通讯作者: 宋松泉
  • 基金资助:
    本研究由国家科技支撑计划项目(2012BAC01B05);国家自然科学基金项目(31371715);国家自然科学基金项目(31640059);广东省科技计划项目(2016B030303007)

Biosynthesis and signaling of ethylene and their regulation on seed germination and dormancy

SONG Song-Quan1,3,*(),LIU Jun2,XU Heng-Heng2,ZHANG Qi2,HUANG Hui3,WU Xian-Jin3   

  1. 1 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2 Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    3 Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province / College of Biological and Food Engineering, Huaihua University, Huaihua 418008, Hunan, China
  • Received:2018-11-22 Accepted:2019-01-19 Published:2019-07-12 Published online:2019-04-09
  • Contact: Song-Quan SONG
  • Supported by:
    This study was supported by the National Science and Technology Support Program(2012BAC01B05);the National Natural Science Foundation of China(31371715);the National Natural Science Foundation of China(31640059);the Guangdong Science and Technology Program(2016B030303007)

摘要:

种子萌发是一种关键的生态和农业性状, 由调控种子休眠状态和萌发潜势的内在和外部信息所决定, 在植物随后的生长发育和产量中起着极其重要的作用。休眠是指种子在合适的条件下暂时不能萌发。乙烯是一种简单的具有多种功能的气体植物激素, 在分子、细胞和整体植物水平调节植物的代谢。在适宜和逆境条件下, 乙烯通过与其他信号分子的相互作用影响植物的行为。本文主要综述乙烯的生物合成与信号、乙烯在种子萌发和休眠释放中的作用以及乙烯与植物激素脱落酸和赤霉素的相互作用; 并提出了需要进一步研究的科学问题, 试图为解释乙烯调控种子萌发与休眠的分子机制提供新的研究思想。

关键词: 脱落酸, 生物合成与信号, 交叉反应, 乙烯, 赤霉素, 种子萌发和休眠

Abstract:

Seed germination, a key ecological and agronomic trait, is determined by both internal and external cues that regulate the dormancy status and the potential for germination in seeds, and plays a critical role during the subsequent growth, development and production of plants. Dormancy is the temporary failure of seed germination under favorable conditions. Ethylene is a simple gaseous phytohormone with multiple roles in regulation of metabolism at molecular, cellular, and whole plant levels. It influences performance of plants under optimal and stressful environments by interacting with other signaling molecules. In the present paper, we mainly summarize ethylene biosynthesis and signaling, the role of ethylene in seed germination and dormancy release, and the interaction of ethylene with phytohormone abscisic acid and gibberellin, and propose some scientific problems to be required to investigate further in order to provide an idea for explaining the molecular mechanism of seed germination and dormancy regulated by ethylene.

Key words: abscisic acid, biosynthesis and signaling, crosstalk, ethylene, gibberellin, seed germination and dormancy

图1

乙烯生物合成途径 S-腺苷甲硫氨酸(S-AdoMet)合成酶催化从甲硫氨酸形成S-AdoMet, 合成1分子的S-AdoMet消耗1分子的ATP(1)。ACC合酶催化S-AdoMet转化成为ACC是乙烯合成的限速步骤(2)。随着ACC的合成, 甲硫腺苷(MTA)是ACC合酶产生的副产物。MTA回到甲硫氨酸的再循环保存了甲硫基, 能够维持细胞中恒定的甲硫氨酸浓度。ACC丙二酰化作用成为丙二酰-ACC 使ACC库枯竭并减少乙烯的产生。ACC氧化酶利用ACC作为底物, 催化乙烯合成的最后步骤, 同时产生二氧化碳和氰化物(3)。氰化物被β-氰丙氨酸合酶代谢产生无毒的物质。ACC合酶和ACC氧化酶被同源异构蛋白、发育和环境信息的转录调节用虚线箭头表示。引自Lin等[19]。"

图2

拟南芥中乙烯信号途径的最近模型 乙烯由受体蛋白ETR1、ERS1、ETR2、ERS2和EIN4 (绿色表示)感受, 受体是乙烯信号的负调控因子。受体通过它们的GAF结构域(在受体的细胞质区域用五边形表示)与其他的受体相互作用, 并在ER膜中形成更高层次的复合物。铜(一种乙烯结合的辅因子, 红色圆圈)由铜转运体RAN1 (橙色表示)传递给受体。RTE1 (粉红色)与ETR1相联系, 介导受体信号输出。(A)在乙烯缺乏时, 受体激活CTR1 (黄色)。CTR1通过直接磷酸化EIN2的C-末端(蓝色圆圈)使其失活(紫色)。EIN2能够直接与受体的激酶结构域(在受体的细胞质区域在五边形下较大的椭圆)相互作用。EIN2的水平通过26S蛋白酶体(灰色)被F-box蛋白ETP1和ETP2(绿色星状物)负调控。在细胞核中, 转录因子EIN3/EIL1 (红色)通过蛋白酶体被另外2个F-box蛋白EBF1/2(蓝色星状物)降解。在EIN3/EIL1缺乏时, 乙烯反应基因的转录被关闭。(B)在乙烯存在时, 受体与激素结合并失去活性, 依次关闭CTR1。这种失活阻止正调控因子EIN2的磷酸化。EIN2的C-末端被一种未知的机制所剪切, 并移动到细胞核, 在细胞核中使EIN3/EIL1稳定和诱导EBF1/2的降解。转录因子EIN3/EIL1形成二聚体, 激活乙烯靶基因的表达, 包括F-box基因EBF2 (深蓝色卷曲线, 它产生抑制乙烯途径活性的负反馈环)或者转录因子基因ERF1(淡蓝色线, 它依次始启一个转录级联, 导致数百个乙烯调控基因的活化和抑制)。在乙烯反应基因中有受体基因ETR2 (绿色线), 它的mRNA被乙烯上调, 以及被翻译成为一批新的没有与乙烯结合的受体分子; 这些受体分子然后活化负调控因子CTR1, 从而提供了在不添加乙烯的情况下向下调节乙烯信号的手段。途径中的其他调控节点是核糖核酸外切酶EIN5 (淡橙色, 它控制EBF2 的mRNA水平)以及F-box蛋白ETP1和ETP2 (绿色星状物, 在乙烯存在时, 它们被降解, 导致EIN2的稳定)。正箭头和负箭头分别表示激活和下调这个过程。颜色变浅表示的分子(在‘没有乙烯’中的EIN3/EIL1, 或者在‘乙烯’中的ETP1/2和EBF1/2)相应于蛋白酶体介导降解的被标记的不稳定蛋白。卷曲线表示特定的mRNA, 它们的颜色与相应的蛋白质颜色相一致。引自Merchante等[51]。"

表1

乙烯、乙烯利或者1-氨基环丙烷-1-羧酸打破种子休眠的物种(引自Corbuneau et al.[16])"

初生休眠 Primary dormancy 次生休眠 Secondary dormancy 热休眠 Thermo dormancy
尾穗苋 Amaranthus caudatus 尾穗苋 Amaranthus caudatus 莴苣 Lactuca sativa
反枝苋 Amaranthus retroflexus 繁穗苋 Amaranthus paniculatus
拟南芥 Arabidopsis thaliana 向日葵 Helianthus annuus
花生 Arachis hypogaea 莴苣 Lactuca sativa
Chenopodium album 皱叶酸模 Rumex crispus
欧洲水青冈 Fagus sylvatica 苣头苍耳 Xanthium pennsylvanicum
向日葵 Helianthus annuus
苹果 Malus pumila
南欧盐肤木 Rhus coriaria
皱叶酸模 Rumex crispus
柱花草 Stylosanthes humilis
地三叶 Trifolium subterraneum
苣头苍耳 Xanthium pennsylvanicum

图3

乙烯、脱落酸和赤霉素在种子萌发和休眠调控中的相互作用 该方案是基于正文中引证的种子对乙烯、脱落酸或者GA响应的遗传分析、芯片数据和生理研究。乙烯通过抑制ABA的合成和促进它的失活或者分解代谢下调ABA的积累, 也负调控ABA信号。ABA通过ACS和ACO的活性抑制乙烯的生物合成。乙烯也增强GA的代谢和信号, 反过来也一样。“→”和“┤”分别表示信号级联的不同元素之间的正、负相互作用。根据Corbineau等[16]重绘。"

[1] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉 . 种子萌发及其调控的研究进展. 作物学报, 2014,40:1141-1156.
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q . Research progress in seed germination and its control. Acta Agric Sin, 2014,40:1141-1156 (in Chinese with English abstract).
[2] El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu S M, Balzergue S, Baudouin E, Bailly C . Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ, 2015,38:364-374.
doi: 10.1111/pce.2015.38.issue-2
[3] Bewley J D, Bradford K J, Hilhorst H W M, Nonogaki H . Physiology of Development, Germination and Dormancy, 3rd edn. New York: Springer, 2013. pp 247-297.
[4] Finkelstein R, Reeves W, Ariizumi T, Sreber C . Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008,59:387-415.
doi: 10.1146/annurev.arplant.59.032607.092740
[5] 宋松泉 . 种子休眠. 见: “10000个科学难题”农业科学编委会. 10000个科学难题 . 北京: 科学出版社, 2011. pp 31-35.
Song S Q. Seed dormancy. In: The Editorial Board of Agricultural Science for 10000 Selected Problems in Sciences, eds. 10000 Selected Problems in Sciences. Beijing: Science Press, 2011. pp 31-35(in Chinese).
[6] Shu K, Liu X D, Xie Q, He Z H . Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016,9:34-45.
doi: 10.1016/j.molp.2015.08.010
[7] Lenser T, Theissen G . Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci, 2013,18:704-714.
doi: 10.1016/j.tplants.2013.08.007
[8] Meyer R S, Purugganan M D . Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet, 2013,14:840-852.
[9] Simsek S, Ohm J B, Lu H, Rugg M, Berzonsky W, Alamri M S, Mergoum M . Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat. J Sci Food Agric, 2014,94:205-212.
doi: 10.1002/jsfa.2014.94.issue-2
[10] Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W J J . Molecular mechanisms of seed dormancy. Plant Cell Environ, 2012,35:1769-1786.
doi: 10.1111/pce.2012.35.issue-10
[11] Hoang H H, Sechet J, Bailly C, Leymarie J, Corbineau F . Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation. Plant Cell Environ, 2014,37:1393-1403.
[12] Lee H G, Lee K, Seo P J . The Arabidopsis MYB96 transcription factors play a role in seed dormancy. Plant Mol Biol, 2015,87:371-381.
doi: 10.1007/s11103-015-0283-4
[13] Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A . ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci, 2013,4:63. doi: 10.3389/fpls.2013.00063.
[14] Linkies A, Leubner-Metzger G . Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep, 2012,31:253-270.
doi: 10.1007/s00299-011-1180-1
[15] Miransari M, Smith D L . Plant hormones and seed germination. Environ Exp Bot, 2014,99:110-121.
doi: 10.1016/j.envexpbot.2013.11.005
[16] Corbineau F, Xia Q, Bailly C, EI-Maarouf-Bouteau H . Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci, 2014,5:539. doi: 10.3389/fpls.2014.00539.
[17] Khan N A, Khan M I R, Ferrante A, Poor P . Editorial: Ethylene: a key regulatory molecule in plants. Front Plant Sci, 2017,8:1782. doi: 10.3389/fpls.2017.01782.
doi: 10.3389/fpls.2017.01782
[18] Khan N A, Khan M I R . The Ethylene: from senescence hormone to key player in plant metabolism. J Plant Biochem Physiol, 2014,2:e124. doi: 10.4172/2329-9029.1000e124.
[19] Lin Z, Zhong S, Grierson D . Recent advances in ethylene research. J Exp Bot, 2009,60:3311-3336.
doi: 10.1093/jxb/erp204
[20] Schaller G E . Ethylene and the regulation of plant development. BMC Biol, 2012,10:9. doi: 10.1186/1741-7007-10-9.
doi: 10.1186/1741-7007-10-9
[21] Müller M, Munné-Bosch S . Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol, 2015,169:32-41.
doi: 10.1104/pp.15.00677
[22] Thao N P, Khan M I R, Thu N B A, Hoang X L T, Asgher M, Khan N A, Tran L S P . Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol, 2015,169:73-84.
doi: 10.1104/pp.15.00663
[23] Arraes F B M, Beneventi M A, de Sa M E L, Paixao J F R, Albuquerque E V S, Marin S R R, Purgatto E, Nepomuceno A L, Grossi-de-Sa M F . Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol, 2015,15:213. doi: 10.1186/s12870-015-0597-z.
doi: 10.1186/s12870-015-0597-z
[24] Habben J E, Bao X, Bate N J, DeBruin J L, Dolan D, Hasegawa D, Helentjaris T G, Lafitte R H, Lovan N, Mo H, Reimann K, Schussler J R . Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J, 2014,12:685-693.
doi: 10.1111/pbi.2014.12.issue-6
[25] Lieberman M, Mapson L W . Genesis and biogenesis of ethylene. Nature, 1964,204:343-345.
doi: 10.1038/204343a0
[26] Lieberman M, Kunishi A, Mapson L W, Wardale D A . Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol, 1966,41:76-82.
[27] Yang S F, Hoffman N E . Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol, 1984,35:155-189.
doi: 10.1146/annurev.pp.35.060184.001103
[28] Iglesias-Fernandez R, Matilla A . Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of Sisymbrium officinale L. seeds. Planta, 2010,231:653-664.
[29] Yamagami T, Tsuchisaka A, Yamada K, Haddon W F, Harden L A, Theologis A . Biochemical diversity among the 1-aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem, 2003,278:49102-49112.
doi: 10.1074/jbc.M308297200
[30] Tsuchisaka A, Yu G, Jin H, Alonso J M, Ecker J R, Zhang X, Gao S, Theologis A . A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics, 2009,183:979-1003.
[31] Van de Poel B, Van Der Straeten D . 1-aminocyclopropane-1- carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci, 2014,5:640. doi: 10.3389/fpls.2014. 00640.
[32] Yoon G M, Kieber J J . 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants. AOB Plants, 2013, 5: plt017. doi: 10.1093/aobpla/plt017.
[33] Christians M J, Gingerich D J, Hansen M, Binder B M, Kieber J J, Vierstra R D . The BTB ubiquitin ligases ETO1, EOL1, and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J, 2009,57:332-345.
doi: 10.1111/tpj.2009.57.issue-2
[34] Lyzenga W J, Booth J K, Stone S L . The Arabidopsis RING- type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane- 1-carboxylate synthase 7. Plant J, 2012,71:23-34.
doi: 10.1111/tpj.2012.71.issue-1
[35] Kamiyoshihara Y, Iwata M, Fukaya T, Tatsuki M, Mori H . Turnover of LeACS2, a wound-inducible 1-aminocyclopropane- 1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J, 2010,64:140-150.
[36] Ludwikow A, Ciesla A, Kasprowicz-Maluski A, Mitula F, Tajdel M, Galganski L, Ziolkowski P A, Kubiak P, Maleck A, Piechalak A, Szabat M, Gorska A, Dabrowski M, Ibragimow I, Sadoqski J . Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis. Mol Plant, 2014,7:960-967.
doi: 10.1093/mp/ssu025
[37] Skottke K R, Yoon G M, Kieber J J, DeLong A . Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet, 2011,7:e1001370. doi: 10.1371/journal.pgen.10 01370.
doi: 10.1371/journal.pgen.1001370
[38] Van de Poel B, Bulens I, Markoula A, Hertog M L A T M, Dreesen R, Wirtz M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Proft M P, Sauter M, Nicolai B M, Geeraerd A H . Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. Plant Physiol, 2012,160:1498-1514.
doi: 10.1104/pp.112.206086
[39] Matilla A J, Matilla-Vazquez M A . Involvement of ethylene in seed physiology. Plant Sci, 2008,175:87-97.
doi: 10.1016/j.plantsci.2008.01.014
[40] Ververidis P, John P . Complete recovery in vitro of ethylene- forming enzyme-activity. Phytochemistry, 1991,30:725-727.
doi: 10.1016/0031-9422(91)85241-Q
[41] Murphy L J, Robertson K N, Harroun S G, Brosseau C L, Werner-Zwanziger U, Moilanen J, Tuononen H M, Clyburne J A C . A simple complex on the verge of breakdown: isolation of the elusive cyanoformate ion. Science, 2014,344:75-78.
doi: 10.1126/science.1250808
[42] 叶永健, 宋松泉 . Fe 2+和CO2对番木瓜ACC氧化酶活性的影响 . 中山大学学报, 1997,36(2):18-21.
Ye Y J, Song S Q . Effect of Fe 2+ and CO2 on 1-aminocyclopropane-1-carboxylate oxidase from papaya (Carica papaya L.) fruit. Acta Sci Nat Univ Sunyatseni, 1997,36(2):18-21.
[43] Dong J G, Fernandezmaculet J C, Yang S F . Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA, 1992,89:9789-9793.
doi: 10.1073/pnas.89.20.9789
[44] Song S Q, Ye Y J . Effect of O2, ACC and CO2 concentration on the activity of partially purified ACC oxidase from papaya. Acta Phytophysiol Sin, 2001,27:387-392.
[45] Hudgins J W, Ralph S G, Franceschi V R, Bohlmann J . Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane- 1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta, 2006,224:865-877.
doi: 10.1007/s00425-006-0274-4
[46] Ramassamy S, Olmos E, Bouzayen M, Pech J C, Latche A . 1-aminocyclopropane-1-carboxylate oxidase of apple fruitis periplasmic. J Exp Bot, 1998,49:1909-1915.
[47] De Paepe A, Vuylsteke M, van Hummelen P, Zabeau M, van Der Staeten D . Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J, 2004,39:537-559.
doi: 10.1111/tpj.2004.39.issue-4
[48] Van de Poel B, Bulens I, Hertog M L A T M, Nicolai B, Geeraerd A . A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms. New Phytol, 2014,202:952-963.
[49] Binder B M, Chang C, Schaller G E . Perception of ethylene by plants-ethylene receptors. Annu Plant Rev, 2012,44:117-145.
[50] Stepanova A N, Alonso J M . Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol, 2009,12:548-555.
doi: 10.1016/j.pbi.2009.07.009
[51] Merchante C, Alonso J, Stepanova A N . Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol, 2013, 16: 554‒560.
[52] Bakshi A, Piya S, Fernandez J C, Chervin C, Hewezi T, Bindera B M . Ethylene receptors signal via a noncanonical pathway to regulate abscisic acid responses. Plant Physiol, 2018,176:910-929.
doi: 10.1104/pp.17.01321
[53] Ju C, Chang C . Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane. AOB Plants, 2012, 2012: pls031. doi: 10.1093/aobpla/pls031.
[54] Shakeel S N, Wang X, Binder B M, Schaller G E . Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AOB Plants, 2013, 5: plt010. doi: 10.1093/aobpla/plt010.
[55] Chen Y F, Gao Z, Kerris R J, Wang W, Binder B M, Schaller G E . Ethylene receptors function as components of high-molecular- mass protein complexes in Arabidopsis. PLoS One, 2010,5:e8640. doi: 10.1371/journal.pone.0008640.
doi: 10.1371/journal.pone.0008640
[56] Gao Z, Wen C K, Binder B M, Chen Y F, Chang J, Chiang Y H, Kerris R J, Chang C, Schaller G E . Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem, 2008,283:23801-23810.
doi: 10.1074/jbc.M800641200
[57] Hirayama T, Kieber J J, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso J M, Dailey W P, Dancis A, Ecker J R . RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease related copper transporter, is required for ethylene signaling in Arabidopsis. Cell, 1999,97:383-393.
doi: 10.1016/S0092-8674(00)80747-3
[58] Binder B M, Rodriguez F I, Bleecker A B . The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. J Biol Chem, 2010,285:37263-37270.
doi: 10.1074/jbc.M110.170027
[59] Resnick J S, Wen C K, Shockey J A, Chang C . REVERSION-TO ETHYLENE SENSITIVITY 1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA, 2006,103:7917-7922.
doi: 10.1073/pnas.0602239103
[60] Dong C H, Rivarola M, Resnick J S, Maggin B D, Chang C . Subcellular colocalization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J, 2008,53:275-286.
[61] Resnick J S, Rivarola M, Chang C . Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J, 2008,56:423-431.
doi: 10.1111/tpj.2008.56.issue-3
[62] Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J . Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J Mol Biol, 2012,415:768-779.
[63] Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R . EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 1999,284:2148-2152.
doi: 10.1126/science.284.5423.2148
[64] Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H . Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res, 2012,22:1613-1616.
doi: 10.1038/cr.2012.145
[65] Cho Y H, Lee S, Yoo S D . EIN2 and EIN3 in ethylene signaling. Annu Plant Rev, 2012,44:169-187.
[66] Bisson M M A, Groth G . New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant, 2010,3:882-889.
doi: 10.1093/mp/ssq036
[67] An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker J R, Guo H . Ethylene-induced stabilization of ETHYLENE INSENSITIVE 3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell, 2010,22:2384-2401.
doi: 10.1105/tpc.110.076588
[68] Ju C, Yoon G M, Shemansky J M, Lin D Y, Ying Z I, Chang J, Garrett W M, Kessenbrock M, Groth G, Tucker M L, Cooper B, Kieber J J, Chang C . CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA, 2012,109:19486-19491.
doi: 10.1073/pnas.1214848109
[69] Qiao H, Shen Z, Huang S C, Schmitz R J, Urich M A, Briggs S P, Ecker J R . Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science, 2012,338:390-393.
doi: 10.1126/science.1225974
[70] Chen R, Binder B M, Garrett W M, Tucker M L, Chang C, Cooper B . Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Mol Biosyst, 2011,7:2637-2650.
[71] Ji Y, Guo H . From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling. Mol Plant, 2013,6:11-14.
doi: 10.1093/mp/sss150
[72] Li J, Li Z, Tang L, Yang Y, Zouine M, Bouzayen M . A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato. J Exp Bot, 2012,63:427-439.
doi: 10.1093/jxb/err289
[73] Chang K N, Zhong S, Weirauch M T, Hon G, Pelizzola M, Li H, Huang S S C, Schmitz R J, Urich M A, Kuo D, Nery J R, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes T R, Ecker J R . Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife, 2013,2:e00675. doi: 10.7554/eLife.00675.
doi: 10.7554/eLife.00675
[74] Chen Y F, Shakeel S N, Bowers J, Zhao X C, Etheridge N, Schaller G E . Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem, 2007,282:24752-24758.
doi: 10.1074/jbc.M704419200
[75] Gagne J M, Smalle J, Gingerich D J, Walker J M, Yoo S D, Yanagisawa S, Vierstra R D . Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA, 2004,101:6803-6808.
doi: 10.1073/pnas.0401698101
[76] Qiao H, Chang K N, Yazaki J, Ecker J R . Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev, 2009,23:512-521.
doi: 10.1101/gad.1765709
[77] Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P . EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell, 2003,115:679-689.
doi: 10.1016/S0092-8674(03)00968-1
[78] Konishi M, Yanagisawa S . Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J, 2008,55:821-831.
doi: 10.1111/tpj.2008.55.issue-5
[79] Kevany B M, Tieman D M, Taylor M G, Cin V D, Klee H J . Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J, 2007,51:458-467.
doi: 10.1111/j.1365-313X.2007.03170.x
[80] Fu J R, Yang S F . Release of heat pretreatment-induced dormancy in lettuce seeds by ethylene or cytokinin in relation to the production of ethylene and the synthesis of 1-aminocyclopropane-1- carboxylic acid during germination. J Plant Growth Regul, 1983,2:185-192.
doi: 10.1007/BF02042247
[81] Siriwitayawan G, Geneve R L, Downie A B . Seed germination of ethylene perception mutants of tomato and Arabidopsis. Seed Sci Res, 2003,13:303-314.
doi: 10.1079/SSR2003147
[82] Kępczyński J, Sznigir P . Participation of GA3, ethylene, NO and HCN in germination of Amaranthus retroflexus L. seeds with various dormancy levels. Acta Physiol Plant, 2014,36:1463-1472.
[83] Van de Poel, Smet D, Van Der Straeten D . Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiol, 2015,169:61-72.
doi: 10.1104/pp.15.00724
[84] Wood L A, Kester S T, Geneve R L . The physiological basis for ethylene-induced dormancy release in three Echinacea species with special reference to the influence of the integumentary tapetum. Sci Hortic, 2013: 156:63-72.
[85] Lin Y, Yang L, Paul M, Zu Y, Tang Z . Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium niroprusside. Plant Physiol Biochem, 2013,73:211-218.
doi: 10.1016/j.plaphy.2013.10.003
[86] Silva P O, Medina E F, Barros R S, Ribeiro D M . Germination of salt-stressed seeds as related to ethylene biosynthesis ability in three Stylosanthes species. J Plant Physiol, 2014,171:14-22.
[87] Sinska I . Interaction of ethephon with cytokinin and gibberellin during the removal of apple seed dormancy and germination of embryos. Plant Sci, 1989,64:39-44.
doi: 10.1016/0168-9452(89)90149-0
[88] Corbineau F, Côme D. Germination of sunflower seeds as related to ethylene synthesis and sensitivity: an overview. In: Vendrell M, Klee H, Pech J C, Romojaro F, eds. Biology and Biotechnology of the Plant Hormone Ethylene III. Amsterdam: IOS Press, 2003. pp 216-221.
[89] Ribeiro D M, Barros R S . Sensitivity to ethylene as a major component in the germination of seeds of Stylosanthes humilis. Seed Sci Res, 2006,16:37-45.
[90] Gniazdowska A, Krasuska U, Bogatek R . Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta, 2010,232:1397-1407.
doi: 10.1007/s00425-010-1262-2
[91] Argyris J, Dahal P, Hayashi E, Still D W, Bradford K J . Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol, 2008,148:926-947.
doi: 10.1104/pp.108.125807
[92] Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B, Macháčková I M, Fischer U, Leubner-Metzger G . 1-Amynocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot, 2007,58:3047-3060.
[93] Krasuska U, Ciacka K, Debska K, Bogatek R, Gniazdowska A . Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos. J Plant Physiol, 2014,171:1132-1141.
[94] Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C . Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signaling pathway. J Exp Bot, 2008,59:2241-2251.
doi: 10.1093/jxb/ern089
[95] Chiwocha S D S, Cutler A J, Abrams S R, Ambrose S J, Yang J, Kermode A R . The ert1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during main tenance of seed dormancy, moist-chilling and germination. Plant J, 2005,42:35-48.
[96] Subbiah V, Reddy K J . Interactions between ethylene, abscisisc acid and cytokinin during germination and seedling establishment in Arabidopsis. J Biosci, 2010,35:451-458.
doi: 10.1007/s12038-010-0050-2
[97] Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X . Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol, 2007,64:633-644.
doi: 10.1007/s11103-007-9182-7
[98] Jimenez J A, Rodriguez D, Calvo A P, Mortensen L C, Nicolas G, Nicolas C . Expression of a transcription factor (FsERF1) involved in ethylene signaling during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant, 2005,125:373-380.
[99] Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta M T, Tournier B, Khalil-Ahmad Q, Regad F, Latché A, Pech J C, Bouzayen M . Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol, 2006,47:1195-1205.
doi: 10.1093/pcp/pcj084
[100] Cadman C S C, Toorop P E, Hilhorst H W M, Finch-Savage W E . Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J, 2006,46:805-822.
doi: 10.1111/tpj.2006.46.issue-5
[101] Linkies A, Müller K, Morris K, Turečková V, Wenk M, Cadman C S C, Corbineau F, Strnad M, Lynn J R, Finch-Savage W E, Leubner-Metzger G . Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell, 2009,21:3803-3822.
[102] Nonogaki H . Seed dormancy and germination-emerging mechanism and new hypotheses. Front Plant Sci, 2014,e5:233. doi: 10.3389/fpls.2014.00233.
[103] Liu X, Hou X L . Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci, 2018,9:251. doi: 10.3389/fpls.2018.00251.
doi: 10.3389/fpls.2018.00251
[104] Dong T T, Tong J H, Xiao L T, Cheng H Y, Song S Q . Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul, 2012,66:191-202.
doi: 10.1007/s10725-011-9643-5
[105] Dong Z, Yu Y, Li S, Wang J, Tang S, Huang R . Abscisic acid antagonizes ethylene production through the ABI4-mediated transcriptional repression of ACS4 and ACS8 in Arabidopsis. Mol Plant, 2016,9:126-135.
[106] Penfield S, Li Y, Gilday A D, Graham S, Graham I A . Arabidopsis ABA INSENSITIVE 4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell, 2006,18:1887-1899.
doi: 10.1105/tpc.106.041277
[107] Cheng W H, Chiang M H, Hwang S G, Lin P C . Antagonism between abscisic acid and ethylene in Arabidopsis acts inparallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol Biol, 2009,71:61-80.
doi: 10.1007/s11103-009-9509-7
[108] Kucera B, Cohn M A, Leubner-Metzger G . Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005,15:281-307.
doi: 10.1079/SSR2005218
[109] Beaudoin N, Serizet C, Gosti F, Giraudat J . Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 2000,12:1103-1115.
doi: 10.1105/tpc.12.7.1103
[110] Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez J A, Nicolas G, Nicolas C . Functional analysis in Arabidopsis of FsPTP1, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation. Planta, 2011,234:589-597.
[111] Calvo A P, Nicolas C, Lorenzo O, Nicolas G, Rodriguez D . Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J Plant Growth Regul, 2004,23:44-53.
[112] Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S . Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003,15:1591-1604.
doi: 10.1105/tpc.011650
[113] Calvo A P, Nicolas C, Nicolas G, Rodriguez D . Evidence of a crosstalk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant, 2004,120:623-630.
[114] Lorenzo O, Rodriguez D, Nicolas C, Nicolas G. Characterization and expression of two protein kinase and an EIN3-like genes, which are regulated by ABA and GA3 in dormant Fagus sylvatica seeds. In: Black M, Bradford K J, Vazquez-Ramos J, eds. Seed Biology: Advances and Applications. Wallingford: CAB International, 2000. pp 329-340.
[115] Davière J M, Achard P . Gibberellin signaling in plants. Development, 2013,140:1147-1151.
doi: 10.1242/dev.087650
[116] Dill A, Thomas S G, Steber C M, Sun T P . The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004,16:1392-1405.
doi: 10.1105/tpc.020958
[117] Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd N P . The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA, 2007,104:6484-6489.
doi: 10.1073/pnas.0610717104
[118] Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L . The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell, 2008,20:2729-2745.
doi: 10.1105/tpc.108.061515
[119] Schwechheimer C . Understanding gibberellic acid signaling: are we there yet? Curr Opin Plant Biol, 2008,11:9-15.
doi: 10.1016/j.pbi.2007.10.011
[120] Zhang J, Yu J, Wen C-K . An alternate route of ethylene receptor signaling. Front Plant Sci, 2014,5:648. doi: 10.3389/fpls.2014.00648.
[121] Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y . Abscisic acid and the control of seed dormancy and germination. Seed Sci Res, 2010,20:55-67.
doi: 10.1017/S0960258510000012
[122] Liu S J, Song S H, Wang W Q, Song S Q . De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing. Plant Physiol Biochem, 2015,96:154-162.
doi: 10.1016/j.plaphy.2015.07.020
[123] Wang W Q, Song B Y, Deng Z J, Wang Y, Liu S J, Møller I M, Song S Q . Proteomic analysis of Lactuca sativa seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by PEG fractionation. Plant Physiol, 2015,167:1332-1350.
[124] Xu H H, Liu S J, Song S H, Wang W Q, Møller I M, Song S Q . Proteome changes associated with dormancy release of Dongxiang wild rice seeds. J Plant Physiol, 2016,206:68-86.
doi: 10.1016/j.jplph.2016.08.016
[1] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[4] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[5] 常博文,钟鹏,刘杰,唐中华,高亚冰,于洪久,郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130.
[6] 徐学中,汪婷,万旺,李思慧,朱国辉*. 水稻ABA生物合成基因OsNCED3响应干旱胁迫[J]. 作物学报, 2018, 44(01): 24-31.
[7] 李永辉,陈琳琳,孙炳剑,王利民,邢小萍,袁虹霞,丁胜利*,李洪连*. 假禾谷镰孢侵染小麦后3种植物激素相关基因的差异表达分析[J]. 作物学报, 2017, 43(11): 1632-1642.
[8] 余建,刘长英,赵爱春,王传宏,蔡雨翔,余茂德*. 桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析[J]. 作物学报, 2017, 43(06): 839-848.
[9] 李帅,赵秋棱,彭阳,徐熠,李加纳,倪郁*. SA、MeJA和ACC处理对甘蓝型油菜叶角质层蜡质组分、结构及渗透性的影响[J]. 作物学报, 2016, 42(12): 1827-1833.
[10] 叶德练,王玉斌,周琳,李建民,段留生,张明才,李召虎. 乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应[J]. 作物学报, 2015, 41(11): 1701-1710.
[11] 刘长英,吕蕊花,朱攀攀,范伟,李军,王晓红,李镇刚,王茜龄,赵爱春,鲁成,余茂德. 桑树EIN2基因的分离与表达[J]. 作物学报, 2014, 40(07): 1205-1212.
[12] 李晨晨,侯雷,尹亮,赵金凤,袁守江,张文会,李学勇. 水稻极矮突变体s2-47对赤霉素的响应及基因定位研究[J]. 作物学报, 2013, 39(10): 1766-1774.
[13] 桑贤春,杜川,王晓雯,杨正林,凌英华,赵芳明,李云峰,何光华. 水稻矮秆脆性突变体dbc1的鉴定与基因定位[J]. 作物学报, 2013, 39(04): 626-631.
[14] 岳川,曾建明,曹红利,郝心愿,章志芳,王新超,杨亚军. 茶树赤霉素受体基因CsGID1a的克隆与表达分析[J]. 作物学报, 2013, 39(04): 599-608.
[15] 刘杨,温晓霞,顾丹丹,郭强,曾爱,李长江,廖允成. 多胺对冬小麦籽粒灌浆的影响及其生理机制[J]. 作物学报, 2013, 39(04): 712-719.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!