欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (01): 24-31.doi: 10.3724/SP.J.1006.2018.00024

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻ABA生物合成基因OsNCED3响应干旱胁迫

徐学中,汪婷,万旺,李思慧 ,朱国辉*   

  1. 华南农业大学生命科学学院,广东广州 510642
  • 收稿日期:2016-11-30 修回日期:2017-09-10 出版日期:2018-01-12 网络出版日期:2017-10-27
  • 基金资助:

    本研究由国家自然科学基金项目(31171466, 31570250)和国家重点基础研究发展计划(2012CB114306)资助。

ABA Biosynthesis Gene OsNCED3 Confers Drought Stress Tolerance in Rice

XU Xue-Zhong,WANG Ting,WAN Wang,LI Si-Hui,ZHU Guo-Hui*   

  1. College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2016-11-30 Revised:2017-09-10 Published:2018-01-12 Published online:2017-10-27
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31171466) and the National Basic Research Program of China (2012CB114306).

摘要:

9-顺-环氧类胡萝卜素双加氧酶(NCED)是植物内源脱落酸(ABA)生物合成的限速酶,由NCED基因家族编码,水稻中响应干旱胁迫并以此调节ABA水平的OsNCED基因尚见未报道。本研究发现在水稻已报道的5个OsNCED基因中,OsNCED3的表达受干旱胁迫诱导,复水处理后其表达快速下调,其表达模式与此过程中内源ABA含量变化趋势一致。OsNCED3的RNAi转基因植株表现为干旱敏感,且生物量下降;而过量表达OsNCED3基因增加了水稻的抗旱性。干旱胁迫下过量表达OsNCED3的转基因株系有较高的ABA水平,同时其抗氧化酶超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,以及逆境响应基因脱水素蛋白(Dehydrin)和胚胎发育晚期丰富蛋白(LEA)转录表达均高于野生型。下调表达OsNCED3的转基因株系则呈现相反的变化趋势。因此,OsNCED3是水稻干旱胁迫响应基因,调节了干旱环境下ABA水平和抗逆性。

关键词: OsNCED3基因, 干旱胁迫, 脱落酸, 水稻

Abstract:

NCED (9-cis-epoxycarotenoid dioxygenase), encoded by NCED gene family, is a rate limited enzyme responsible for the ABA biosynthesis in plants. It remains unknown whether OsNCED genes are responsible for controlling ABA levels during drought stress in rice. Among the five OsNCED genes, we found that OsNCED3 mRNA level was promptly induced by PEG-mimic drought stress and decreased by re-watering, with a tendency of well consistent with the variation of ABA content. Down-regulating of OsNCED3 gene expression in RNA interference (RNAi)-transgenic plants decreased the total biomass and showed a hypersensitive phenotype subjecting to drought stress, while the overexpression (OE)-transgenic seedlings increased the drought stress tolerance compared with the wild-type (WT). ABA contents in OsNCED3-OE leaves were higher than those in WT, meanwhile, OsNCED3-OE lines also increased the activities of anti-oxidative enzyme including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and expressions of stress/drought-related genes, i.e. dehydrin protein, LEA protein under drought stress. OsNCED3-RNAi lines showed an opposite tendency with the OsNCED3-OE plants. We therefore conclude that OsNCED3 gene plays an important role in controlling ABA level and drought stress resistance in rice.

Key words: OsNCED3 gene, drought stress, abscisic acid, Oryza sativa

[1]Hu H, Xiong L. Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol, 2014, 65: 715–741 [2]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273 [3]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227 [4]Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165–185 [5]Qin X, Zeevaart J A. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA, 1999, 96: 15354–15361 [6]Zhu G, Ye N, Zhang J. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol, 2009, 50: 644–651 [7]Zhu G, Ye N, Yang J, Peng X, Zhang J. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J Exp Bot, 2011, 62: 3907–3916 [8]Hwang S, Chen H, Huang W, Chu Y, Shii C, Cheng W. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci, 2010, 178: 12–22 [9]李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 261–263 Li H S. Experimental Principle and Technology of Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 261–263 [10]Priya R, Siva R. Analysis of phylogenetic and functional diverge in plant nine-cis epoxycarotenoid dioxygenase gene family. J Plant Res, 2015, 128: 519–534 [11]Tan B C, Joseph L M, Deng W T, Liu L, Li Q B, Cline K, Mccarty D R. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J, 2003, 35: 44–56 [12]Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001, 27: 325–333 [13]Ruggiero B, Koiwa H, Manabe Y, Quist T M, Inan G, Saccardo F, Joly R J, Hasegawa P M, Bressan R A, Maggio A. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol, 2004, 136: 3134–3147 [14]Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J, 2006, 45: 309–319 [15]Hu X, Zhang A, Zhang J, Jiang M. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol, 2006, 47: 1484–1495 [16]Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 1991, 11: 81–128 [17]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399 [18]Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938–1952 [19]Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008, 9: 1–22

[1] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[4] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[5] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[6] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[7] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[8] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[9] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[10] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
[11] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[12] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[13] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[14] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[15] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!