欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1766-1774.doi: 10.3724/SP.J.1006.2013.01766

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻极矮突变体s2-47对赤霉素的响应及基因定位研究

李晨晨1,2,侯雷1,尹亮3,赵金凤2,袁守江3,张文会1,*,李学勇2,*   

  1. 聊城大学生命科学学院, 山东聊城252059; 2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京100081; 3 山东省水稻研究所, 山东济南250100
  • 收稿日期:2013-02-01 修回日期:2013-06-09 出版日期:2013-10-12 网络出版日期:2013-08-01
  • 通讯作者: 李学勇, E-mail: lixueyong@caas.cn, Tel: 010-82107409; 张文会, E-mail: whzhang@lcu.edu.cn, Tel: 13563589359
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2013CBA01401)资助。

Gibberellin Responsiveness and Gene Mapping of the Rice Extreme Dwarf Mutant s2-47

LI Chen-Chen1,2,HOU Lei1,YIN Liang3,ZHAO Jin-Feng2,YUAN Shou-Jiang3,ZHANG Wen-Hui1,*,LI Xue-Yong2,*   

  1. 1 School of Life Science, Liaocheng University, Liaocheng 252059, China; 2 National Key Facility for Crop Gene Resource and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Shandong Rice Research Institute, Jinan 250100, China
  • Received:2013-02-01 Revised:2013-06-09 Published:2013-10-12 Published online:2013-08-01
  • Contact: 李学勇, E-mail: lixueyong@caas.cn, Tel: 010-82107409; 张文会, E-mail: whzhang@lcu.edu.cn, Tel: 13563589359

摘要:

通过EMS诱变日本晴获得1个极端矮化突变体s2-47,其表型为极度矮化、叶色深绿、不能抽穗结实。对水稻胚乳的α-淀粉酶诱导实验表明s2-47突变体与GA的信号传导途径无关,外源活性GA3对水稻幼苗株高的促进实验显示s2-47应与赤霉素的生物合成有关。利用s2-47Dular构建F2群体并精细定位表明,s2-47的表型与水稻OsCPS1基因紧密连锁,其编码的柯巴焦磷酸合成酶是赤霉素生物合成途径的第一个关键酶。序列分析发现,s2-47突变体的OsCPS1基因编码区发生了单个碱基缺失导致移码突变。OsCPS1基因在植株地上部都有表达,在节中表达最高。OsCPS1基因的表达受外源GA3抑制,但在s2-47突变体中表达上调。

关键词: 水稻, 矮秆突变体, 赤霉素, 基因定位, OsCPS1基因

Abstract:

We have isolated a dwarf mutant s2-47 from Nipponbare mutagenized by EMS, which is an extreme dwarf with dark green leaves and without reproductive development. GA3 treatment of seedlings and α-amylase activity analysis in endosperm showed that the mutated gene is involved in GA biosynthesis. Fine mapping showed that the mutant phenotype was tightly linked with the OsCPS1 locus, which encodes the ent-copalyl diphosphate synthase, the first key enzyme in GA biosynthesis. Sequence analysis showed that there is a single nucleotide deletion in the 6th exon of the OsCPS1 gene in the s2-47 mutant. OsCPS1 was expressed in all the above-ground parts of plants with the highest expression in nodes. The OsCPS1 expression was down-regulated by GA3 treatment but up-regulated in the s2-47 mutant.

Key words: Rice, Dwarf mutant, Gibberellin, Gene mapping, OsCPS1

[1]Aquino R C, Jennings P R. Inheritance and significance of dwarfism in an indica rice variety. Crop Sci, 1966, 6: 551–554



[2]Tsai K H. Detection of a new semidwarfing gene, sd-8(t). Rice Genet Newsl, 1994, 11: 80–83



[3]Tanisaka T. Two useful semidwarf genes in short-culm mutant line HS90 of rice. Breed Sci, 1994, 44: 397–403



[4]Padma A, Reddy G. Genetic behavior of five induced dwarf mutants in an indica rice cultivar. Crop Sci, 1977, 17: 860–863



[5]Foster K W, Rutger J N. Inheritance of semidwarfism in rice, Oryza sativa L. Genetics, 1978, 88: 559–574



[6]Silverstone A L, Sun T. Gibberellins and green revolution. Trends Plant Sci, 2000, 5: 1–2



[7]Wolfgang S, Marc H E, Peter M C. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberelin20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048



[8]Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G, Kitano H, Matsuoka M. Loss-of-function of a rice Gbbberelin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci, 2002, 52: 143–150



[9]Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702



[10]Huang X-Z(黄先忠), Jiang C-F(蒋才富), Liao L-L(廖立力), Fu X-D(傅向东). Progress on molecular foundation of GA biosynthesis pathway and signaling. Chin Bull Bot (植物学通报), 2006, 23(5): 499–510 (in Chinese with English abstract)



[11]Hou L(侯雷), Yuan S-J(袁守江), Yin L(尹亮), Zhao J-F(赵金凤), Wan G-F(万国峰), Zhang W-H(张文会), Li X-Y(李学勇). Phenotypic analysis and molecular characterization of two allelic mutants of the Dwarf18 gene in rice. Acta Agron Sin (作物学报), 2012, 38(8): 1416–1424 (in Chinese with English abstract) 



[12]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698



[13]Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Xiang H, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19: 2140-2155 



[14]Zhang Y-Y(张迎迎), He Z-H(何祖华). Gibberellin metabolism and signal transduction in higher plants. Plant Physiol J (植物生理学通讯), 2010, 46(7): 623–630 (in Chinese with English abstract)



[15]Davies P J. Plant Hormones: Physiology, Biochemistry and Molecular Biology. The Netherlands: Kluwer Academic Publishers, 1995. pp 13–38



[16]Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523–530



[17]Prisic S, Peters R J. Synergistic substrate inhibition of ent-copalyl diphosphate synthase: a potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiol, 2007, 144: 445–454



[18]Swain S M, Ross J J, Reid J B, Kamiya Y. Gibberellins and pea seed development: expression of the lhi,ls and le5839 mutations. Planta, 1995, 195: 426–433



[19]Sun T P, Goodman H M, Ausubel F M. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell, 1992, 4: 119–128



[20]Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75–84



[21]Ait-Ali T, Swain S M, Reid J B, Sun T, Kamiya Y. The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J, 1997, 11: 443–454



[22]Tomoaki S. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642–1653



[23]Wang H(王慧), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强). Genetic analysis of space induced rice dwarf mutant CHA-1 and its response to gibberellic acid (GA3). Chin J Rice Sci(中国水稻科学), 2004, 18(5): 391–395 (in Chinese with English abstract)



[24]Lanahan M B, Ho T H. Slender barley: a constitutive gibberellin-response mutant. Planta, 1988, 175: 107–114



[25]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325



[26]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[27]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecu-lar evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[28]Saitou N, Nei M.The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425



[29]Otomo K, Kenmoku H, Oikawa H, König W A, Toshima H, Mitsuhashi W, Yamane H, Sassa T, Toyomasu T. Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J, 2004, 39: 886–893

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!