作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1766-1774.doi: 10.3724/SP.J.1006.2013.01766
李晨晨1,2,侯雷1,尹亮3,赵金凤2,袁守江3,张文会1,*,李学勇2,*
LI Chen-Chen1,2,HOU Lei1,YIN Liang3,ZHAO Jin-Feng2,YUAN Shou-Jiang3,ZHANG Wen-Hui1,*,LI Xue-Yong2,*
摘要:
通过EMS诱变日本晴获得1个极端矮化突变体s2-47,其表型为极度矮化、叶色深绿、不能抽穗结实。对水稻胚乳的α-淀粉酶诱导实验表明s2-47突变体与GA的信号传导途径无关,外源活性GA3对水稻幼苗株高的促进实验显示s2-47应与赤霉素的生物合成有关。利用s2-47和Dular构建F2群体并精细定位表明,s2-47的表型与水稻OsCPS1基因紧密连锁,其编码的柯巴焦磷酸合成酶是赤霉素生物合成途径的第一个关键酶。序列分析发现,s2-47突变体的OsCPS1基因编码区发生了单个碱基缺失导致移码突变。OsCPS1基因在植株地上部都有表达,在节中表达最高。OsCPS1基因的表达受外源GA3抑制,但在s2-47突变体中表达上调。
[1]Aquino R C, Jennings P R. Inheritance and significance of dwarfism in an indica rice variety. Crop Sci, 1966, 6: 551–554[2]Tsai K H. Detection of a new semidwarfing gene, sd-8(t). Rice Genet Newsl, 1994, 11: 80–83 [3]Tanisaka T. Two useful semidwarf genes in short-culm mutant line HS90 of rice. Breed Sci, 1994, 44: 397–403[4]Padma A, Reddy G. Genetic behavior of five induced dwarf mutants in an indica rice cultivar. Crop Sci, 1977, 17: 860–863[5]Foster K W, Rutger J N. Inheritance of semidwarfism in rice, Oryza sativa L. Genetics, 1978, 88: 559–574[6]Silverstone A L, Sun T. Gibberellins and green revolution. Trends Plant Sci, 2000, 5: 1–2[7]Wolfgang S, Marc H E, Peter M C. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberelin20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048[8]Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G, Kitano H, Matsuoka M. Loss-of-function of a rice Gbbberelin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci, 2002, 52: 143–150[9]Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702[10]Huang X-Z(黄先忠), Jiang C-F(蒋才富), Liao L-L(廖立力), Fu X-D(傅向东). Progress on molecular foundation of GA biosynthesis pathway and signaling. Chin Bull Bot (植物学通报), 2006, 23(5): 499–510 (in Chinese with English abstract)[11]Hou L(侯雷), Yuan S-J(袁守江), Yin L(尹亮), Zhao J-F(赵金凤), Wan G-F(万国峰), Zhang W-H(张文会), Li X-Y(李学勇). Phenotypic analysis and molecular characterization of two allelic mutants of the Dwarf18 gene in rice. Acta Agron Sin (作物学报), 2012, 38(8): 1416–1424 (in Chinese with English abstract) [12]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698[13]Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Xiang H, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19: 2140-2155 [14]Zhang Y-Y(张迎迎), He Z-H(何祖华). Gibberellin metabolism and signal transduction in higher plants. Plant Physiol J (植物生理学通讯), 2010, 46(7): 623–630 (in Chinese with English abstract)[15]Davies P J. Plant Hormones: Physiology, Biochemistry and Molecular Biology. The Netherlands: Kluwer Academic Publishers, 1995. pp 13–38 [16]Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523–530[17]Prisic S, Peters R J. Synergistic substrate inhibition of ent-copalyl diphosphate synthase: a potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiol, 2007, 144: 445–454[18]Swain S M, Ross J J, Reid J B, Kamiya Y. Gibberellins and pea seed development: expression of the lhi,ls and le5839 mutations. Planta, 1995, 195: 426–433[19]Sun T P, Goodman H M, Ausubel F M. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell, 1992, 4: 119–128[20]Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75–84[21]Ait-Ali T, Swain S M, Reid J B, Sun T, Kamiya Y. The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J, 1997, 11: 443–454[22]Tomoaki S. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642–1653 [23]Wang H(王慧), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强). Genetic analysis of space induced rice dwarf mutant CHA-1 and its response to gibberellic acid (GA3). Chin J Rice Sci(中国水稻科学), 2004, 18(5): 391–395 (in Chinese with English abstract) [24]Lanahan M B, Ho T H. Slender barley: a constitutive gibberellin-response mutant. Planta, 1988, 175: 107–114[25]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325[26]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[27]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecu-lar evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599[28]Saitou N, Nei M.The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425[29]Otomo K, Kenmoku H, Oikawa H, König W A, Toshima H, Mitsuhashi W, Yamane H, Sassa T, Toyomasu T. Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J, 2004, 39: 886–893 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|