作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1754-1765.doi: 10.3724/SP.J.1006.2013.01754
张建,Aijaz Ahmed SOOMRO,柴路,崔彦茹,王小倩,郑天清,徐建龙*,黎志康
ZHANG Jian,Aijaz Ahmed SOOMRO,CHAI Lu,CUI Yan-Ru,WANG Xiao-Qian,ZHENG Tian-Qing,XU Jian-Long*,LI Zhi-Kang
摘要:
铁和锌是水稻生长必需的微量元素,也是重金属污染元素。在低洼或酸性土壤中,水稻容易遭受亚铁和锌毒害,抑制水稻生长,造成生物量和产量下降。为探讨水稻苗期耐亚铁毒、锌毒的遗传机制,利用优质粳稻品种Lemont和高产籼稻品种特青为亲本构建的高代双向回交导入系和308个在染色体上均匀分布的SNP标记剖析耐亚铁毒、锌毒相关的QTL。从双向导入系共检测到42个影响耐亚铁毒、锌毒相关性状如苗高、苗干重、根干重以及胁迫与对照相对值的QTL,多数位点增强亚铁毒、锌毒抗性的有利等位基因来自Lemont。其中同时在2个背景下表达的QTL有4个,占定位QTL总数的9.52%,说明大多数QTL的表达具有明显的遗传背景效应。同一遗传背景下同时影响耐亚铁毒和锌毒的QTL有9个,其中QSdw5在2个背景中均被检测到,其效应大小和方向一致,说明水稻苗期耐亚铁毒、锌毒之间存在遗传重叠位点。因此,通过分子标记辅助选择从Lemont中导入或聚合有利的遗传重叠区域,可以提高特青对亚铁毒、锌毒的抗性水平。
[1]Zhou J-L(周建林), Tang J-J(唐建军). Physiological indices for evaluating iron-toxicity tolerance of rice (Oryza sativa L.) Chin J Appl Ecol (应用生态学报), 2001, 12(1): 159–160 (in Chinese with English abstract)[2]Gross J, Stein R J, Fett-Neto A G, Fett J P. Iron homeostasis related genes in rice. Genet Mol Biol, 2003, 26: 477–497 [3]Song A, Li P, Li Z J, Fan F L, Nikolic M, Liang Y C. The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil, 2011, 344: 319–333 [4]Fageria N K, Rabelo N A. Tolerance of rice cultivars to iron toxicity. Plant Nutr, 1987, 10: 653–661[5]Ajay Rathore V S. Effect of Zn2+ stress in rice on growth and photosynthetic process. Photosynthctica, 1995, 1: 571–584[6]Wu P, Hu B, Liao C Y, Zhu J M, Wu Y R, Senadhira D, Paterson A H. Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant Soil, 1998, 203: 217–226 [7]Wan J L, Zhai H Q, Wan J M, Ikehashi H. Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L. Euphytica, 2003, 131: 201–206[8]Wan J L, Zhai H Q, Wan J M, Yasui H, Yoshimura A. Detection and analysis of QTLs associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.) using recombinant inbred lines. Acta Agron Sin, 2004, 30: 329–333[9]Wan J-L(万建林), Zhai H-Q(翟虎渠), Wan J-M(万建民). Mapping of QTLs for ferrous iron toxicity tolerance in rice (Oryza sativa L.). Acta Genet Sin(遗传学报), 2005, 32(11): 1156–1166 (in English with Chinese abstract)[10]Ye H-X(叶红霞), Li M(李梅), Zhuang J-Y(庄杰云), Shen S-Q(沈圣泉). Analysis of gene effects of tolerance to high Fe2+ Stress at seedling stage in rice. Mol Plant Breed (分子植物育种), 2007, 5(1): 105–109 (in Chinese with English abstract)[11]Dufey I, Hakizimana P, Draye X, Lutts S, Bertin P. QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica, 2009, 167: 143–160 [12]Liu M-L(刘美玲), Liu X-N(刘湘南), Li T(李婷), Xiu L-N(修丽娜). Analysis of hyperspectral singularity of rice under Zn pollution stress. Trans CSAE (农业工程学报), 2010, 26(3): 191–196 (in Chinese with English abstract)[13]Xu J-M(徐建明), Li C-S(李才生), Mao S-G(毛善国), Wang X(汪鑫), Pan C-Y(樊趁英), Huang P-F(黄鹏飞), Li Y-W(李耀文). Effect of Zinc on rice seedlings growth and activity of SOD and POD. J Anhui Agric Sci (安徽农业科学), 2008, 36(3): 877–878 (in Chinese with English abstract)[14]Dong Y J, Ogawa T, Lin D Z, Koh H J, Kamiunten H, Matsuo M, Cheng S H. Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Field Crops Res, 2005, 95: 420–425[15]Wang H(汪洪), Jin J-Y(金继运). The physiological and molecular mechanisms of Zinc uptake, transport, and hyperaccumulation in plants: A review. Plant Nutr Fert Sci (植物营养与肥料学报), 2009, 15(1): 225–235 (in Chinese with English abstract)[16]Doran G, Eberbach P, Helliwell S. The impact of rice plant roots on the reducing conditions in flooded rice soil. Chemosphere, 2006, 63: 1892–1902[17]Chung M J, Walker P A, Brown R W, Hogstrand C. Zincmediated gene expression offers protection against H2O2-induced cytotoxicity. Toxicol Appl Pharmacol, 2005, 205: 225–236[18]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice, 3rd edn. Manila, Philippine: IRRI, 1976. pp 1–83[19]SAS Institute. SAS/STAT User’s Guide. Cary NC, USA: SAS Institute, 1996. pp 25–36[20]Li H H, Ye GY, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374[21]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought avoidance and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642–1650[22]Li Z K. QTL mapping in rice: A few critical considerations. In: Khush G S, Brar D S, Hardy B, eds. Rice Genetics IV. Science Publishers, Inc., and International Rice Research Institute, New Delhi, India, and Los Banos, Philippines. 2001. pp 153–172[23]International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793–800[24]Mei H W, Xu J L, Li Z K, Luo L J. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet, 2006, 112: 648–656[25]Xie X-W(谢学文), Xu M-R(许美容), Zang J-P(藏金萍), Sun Y(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Zhou Y-L(周永力), Li Z-K(黎志康). Genetic background and environmental effect on expression of QTL for sheath blight resistance in reciprocal intro-gression lines of rice. Acta Agron Sin (作物学报), 2008, 34(11): 1885–1893 (in Chinese with English abstract)[26]Yang J(杨静), Sun Y(孙勇), Cheng L-R(程立锐), Zhou Z(周政), Wang Y(王韵), Zhu L-H(朱苓华), Cang J(苍晶), Xu J-L(徐建龙), Li Z-K(黎志康). Genetic background effect on QTL mapping for salt tolerance revealed by a set of reciprocal introgression line populations in rice. Acta Agron Sin (作物学报), 2009, 35(6): 974–982 (in Chinese with English abstract)[27]Wang Y(王韵), Cheng L-R(程立锐), Sun Y(孙勇), Zhou Z(周政), Zhu L-H(朱苓华), Xu Z-J(徐正进), Xu J-L(徐建龙), Li Z-K(黎志康). Genetic background effect on QTL expression of heading date and plant height and their interaction with environment in reciprocal introgression lines of rice. Acta Agron Sin (作物学报), 2009, 35(8): 1386–1394 (in Chinese with English abstract)[28]Ramesh S A, Shin R, Eide D J, Schachtman D P. Differential metal selectivity and gene expression of two Zinc transporters from rice. Plant Physiol, 2003, 133(1): 126–134[29]Koike S, Inoue H, Mizuno D. OsYSL2 is a rice metal-nicotianamine chelates transporter that is regulated by iron and expressed in the phloem. Plant J, 2004, 39: 415–424[30]Ricachenevsky F K, Sperotto R A, Menguer P K, Fett J P. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep, 2010, 37: 3735–3745[31]Dufey I, Hiel M P, Hakizimana P, Draye X, Lutts S, Kone B, Drame K N, Konate K A, Sie M, Bertin P. Multienvironment quantitative trait loci mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice. Crop Sci, 2012, 52: 539–550 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[3] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[4] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[5] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[6] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[9] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[10] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[11] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|