欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1754-1765.doi: 10.3724/SP.J.1006.2013.01754

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用双向回交导入系定位水稻苗期耐亚铁毒和锌毒的QTL

张建,Aijaz Ahmed SOOMRO,柴路,崔彦茹,王小倩,郑天清,徐建龙*,黎志康   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京 100081
  • 收稿日期:2013-03-07 修回日期:2013-06-04 出版日期:2013-10-12 网络出版日期:2013-08-01
  • 通讯作者: 徐建龙, E-mail: xujianlong@caas.cn?
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2012AA101101)和引进国际先进农业科学技术计划(948计划)项目(2011-G2B)资助。

Mapping of QTL for Ferrous and Zinc Toxicity Tolerance at Seedling Stage Using a Set of Reciprocal Introgression Lines in Rice

ZHANG Jian,Aijaz Ahmed SOOMRO,CHAI Lu,CUI Yan-Ru,WANG Xiao-Qian,ZHENG Tian-Qing,XU Jian-Long*,LI Zhi-Kang   

  1. Institute of Crop Sciences / National Key Facility for Crop Gene Resources & Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-03-07 Revised:2013-06-04 Published:2013-10-12 Published online:2013-08-01
  • Contact: 徐建龙, E-mail: xujianlong@caas.cn?

摘要:

铁和锌是水稻生长必需的微量元素,也是重金属污染元素。在低洼或酸性土壤中,水稻容易遭受亚铁和锌毒害,抑制水稻生长,造成生物量和产量下降。为探讨水稻苗期耐亚铁毒、锌毒的遗传机制,利用优质粳稻品种Lemont和高产籼稻品种特青为亲本构建的高代双向回交导入系和308个在染色体上均匀分布的SNP标记剖析耐亚铁毒、锌毒相关的QTL。从双向导入系共检测到42个影响耐亚铁毒、锌毒相关性状如苗高、苗干重、根干重以及胁迫与对照相对值的QTL,多数位点增强亚铁毒、锌毒抗性的有利等位基因来自Lemont。其中同时在2个背景下表达的QTL4个,占定位QTL总数的9.52%,说明大多数QTL的表达具有明显的遗传背景效应。同一遗传背景下同时影响耐亚铁毒和锌毒的QTL9个,其中QSdw52个背景中均被检测到,其效应大小和方向一致,说明水稻苗期耐亚铁毒、锌毒之间存在遗传重叠位点。因此,通过分子标记辅助选择从Lemont中导入或聚合有利的遗传重叠区域,可以提高特青对亚铁毒、锌毒的抗性水平。

关键词: 耐亚铁毒害, 耐锌毒害, QTL, SNP, 水稻

Abstract:

Ferrum and zinc are essential microelements for rice, and also the heavy metal pollution elements in soil. Rice grow in lowland or acid soil is easily subjected to ferrous and zinc toxicities which harm plant growth and decrease biomass and yield in production. The aim of this study was to identify quantitative trait locus (QTL) underlying ferrous toxicity tolerance (FTT) and zinc toxicity tolerance(ZTT) of rice using a reciprocal advanced backcross introgression lines derived from a cross between Lemont (japonica) and Teqing (indica), and 308 evenly distributed single nucleotide polymorphism (SNP) markers developed from the two parents. Total of 42 putative QTLs affecting shoot height (SH), shoot dry weight (SDW) and root dry weight (RDW) under control and stress conditions and for the relative value of the stress to the control were detected, the alleles at most loci improving the tolerance of ferrous and zinc toxicities were from Lemont. Among them only four QTLs (9.52%) were detected under the two backgrounds, indicating the expression of most QTLs is specific to genetic background.Nine QTLs were detected from the same genetic background affecting the tolerance of both ferrous and zinc toxicities in which QSdw5 was expressed under the two backgrounds with the same direction and similar quantity of gene additive effect,suggesting that there is a genetic overlap between FTT and ZTT at seedling stage in rice. It is likely, therefore, to develop varieties with both FTT and ZTT in rice by introgressing and pyramiding Lemont favorable alleles of the overlapping QTLs underlying FTT and ZTT and to improve Teqing’s FTT and ZTT via marker-assisted selection (MAS).

Key words: Ferrous toxicity tolerance, Zinc toxicity tolerance, Quantitative trait locus (QTL), Single nucleotide polymorphism

[1]Zhou J-L(周建林), Tang J-J(唐建军). Physiological indices for evaluating iron-toxicity tolerance of rice (Oryza sativa L.) Chin J Appl Ecol (应用生态学报), 2001, 12(1): 159–160 (in Chinese with English abstract)



[2]Gross J, Stein R J, Fett-Neto A G, Fett J P. Iron homeostasis related genes in rice. Genet Mol Biol, 2003, 26: 477–497



[3]Song A, Li P, Li Z J, Fan F L, Nikolic M, Liang Y C. The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil, 2011, 344: 319–333 



[4]Fageria N K, Rabelo N A. Tolerance of rice cultivars to iron toxicity. Plant Nutr, 1987, 10: 653–661



[5]Ajay Rathore V S. Effect of Zn2+ stress in rice on growth and photosynthetic process. Photosynthctica, 1995, 1: 571–584



[6]Wu P, Hu B, Liao C Y, Zhu J M, Wu Y R, Senadhira D, Paterson A H. Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant Soil, 1998, 203: 217–226 



[7]Wan J L, Zhai H Q, Wan J M, Ikehashi H. Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L. Euphytica, 2003, 131: 201–206



[8]Wan J L, Zhai H Q, Wan J M, Yasui H, Yoshimura A. Detection and analysis of QTLs associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.) using recombinant inbred lines. Acta Agron Sin, 2004, 30: 329–333



[9]Wan J-L(万建林), Zhai H-Q(翟虎渠), Wan J-M(万建民). Mapping of QTLs for ferrous iron toxicity tolerance in rice (Oryza sativa L.). Acta Genet Sin(遗传学报), 2005, 32(11): 1156–1166 (in English with Chinese abstract)



[10]Ye H-X(叶红霞), Li M(李梅), Zhuang J-Y(庄杰云), Shen S-Q(沈圣泉). Analysis of gene effects of tolerance to high Fe2+ Stress at seedling stage in rice. Mol Plant Breed (分子植物育种), 2007, 5(1): 105–109 (in Chinese with English abstract)



[11]Dufey I, Hakizimana P, Draye X, Lutts S, Bertin P. QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica, 2009, 167: 143–160 



[12]Liu M-L(刘美玲), Liu X-N(刘湘南), Li T(李婷), Xiu L-N(修丽娜). Analysis of hyperspectral singularity of rice under Zn pollution stress. Trans CSAE (农业工程学报), 2010, 26(3): 191–196 (in Chinese with English abstract)



[13]Xu J-M(徐建明), Li C-S(李才生), Mao S-G(毛善国), Wang X(汪鑫), Pan C-Y(樊趁英), Huang P-F(黄鹏飞), Li Y-W(李耀文). Effect of Zinc on rice seedlings growth and activity of SOD and POD. J Anhui Agric Sci (安徽农业科学), 2008, 36(3): 877–878 (in Chinese with English abstract)



[14]Dong Y J, Ogawa T, Lin D Z, Koh H J, Kamiunten H, Matsuo M, Cheng S H. Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Field Crops Res, 2005, 95: 420–425



[15]Wang H(汪洪), Jin J-Y(金继运). The physiological and molecular mechanisms of Zinc uptake, transport, and hyperaccumulation in plants: A review. Plant Nutr Fert Sci (植物营养与肥料学报), 2009, 15(1): 225–235 (in Chinese with English abstract)



[16]Doran G, Eberbach P, Helliwell S. The impact of rice plant roots on the reducing conditions in flooded rice soil. Chemosphere, 2006, 63: 1892–1902



[17]Chung M J, Walker P A, Brown R W, Hogstrand C. Zincmediated gene expression offers protection against H2O2-induced cytotoxicity. Toxicol Appl Pharmacol, 2005, 205: 225–236



[18]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice, 3rd edn. Manila, Philippine: IRRI, 1976. pp 1–83



[19]SAS Institute. SAS/STAT User’s Guide. Cary NC, USA: SAS Institute, 1996. pp 25–36



[20]Li H H, Ye GY, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374



[21]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought avoidance and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642–1650



[22]Li Z K. QTL mapping in rice: A few critical considerations. In: Khush G S, Brar D S, Hardy B, eds. Rice Genetics IV. Science Publishers, Inc., and International Rice Research Institute, New Delhi, India, and Los Banos, Philippines. 2001. pp 153–172



[23]International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793–800



[24]Mei H W, Xu J L, Li Z K, Luo L J. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Theor Appl Genet, 2006, 112: 648–656



[25]Xie X-W(谢学文), Xu M-R(许美容), Zang J-P(藏金萍), Sun Y(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Zhou Y-L(周永力), Li Z-K(黎志康). Genetic background and environmental effect on expression of QTL for sheath blight resistance in reciprocal intro-gression lines of rice. Acta Agron Sin (作物学报), 2008, 34(11): 1885–1893 (in Chinese with English abstract)



[26]Yang J(杨静), Sun Y(孙勇), Cheng L-R(程立锐), Zhou Z(周政), Wang Y(王韵), Zhu L-H(朱苓华), Cang J(苍晶), Xu J-L(徐建龙), Li Z-K(黎志康). Genetic background effect on QTL mapping for salt tolerance revealed by a set of reciprocal introgression line populations in rice. Acta Agron Sin (作物学报), 2009, 35(6): 974–982 (in Chinese with English abstract)



[27]Wang Y(王韵), Cheng L-R(程立锐), Sun Y(孙勇), Zhou Z(周政), Zhu L-H(朱苓华), Xu Z-J(徐正进), Xu J-L(徐建龙), Li Z-K(黎志康). Genetic background effect on QTL expression of heading date and plant height and their interaction with environment in reciprocal introgression lines of rice. Acta Agron Sin (作物学报), 2009, 35(8): 1386–1394 (in Chinese with English abstract)



[28]Ramesh S A, Shin R, Eide D J, Schachtman D P. Differential metal selectivity and gene expression of two Zinc transporters from rice. Plant Physiol, 2003, 133(1): 126–134



[29]Koike S, Inoue H, Mizuno D. OsYSL2 is a rice metal-nicotianamine chelates transporter that is regulated by iron and expressed in the phloem. Plant J, 2004, 39: 415–424



[30]Ricachenevsky F K, Sperotto R A, Menguer P K, Fett J P. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep, 2010, 37: 3735–3745



[31]Dufey I, Hiel M P, Hakizimana P, Draye X, Lutts S, Kone B, Drame K N, Konate K A, Sie M, Bertin P. Multienvironment quantitative trait loci mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice. Crop Sci, 2012, 52: 539–550

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!