作物学报 ›› 2013, Vol. 39 ›› Issue (04): 599-608.doi: 10.3724/SP.J.1006.2013.00599
岳川1,2,**,曾建明1,**,曹红利1,2,郝心愿1,3,章志芳1,王新超1,*,杨亚军1,*
YUE Chuan1,2,**,ZENG Jian-Ming1,**,CAO Hong-Li1,2,HAO Xin-Yuan1,3,ZHANG Zhi-Fang1,WANG Xin-Chao1,*,YANG Ya-Jun1,*
摘要:
GID1作为赤霉素信号转导的受体,在赤霉素作用中具有重要作用。采用同源克隆方法,利用RT-PCR和RACE技术在茶树中克隆到赤霉素受体基因GID1的cDNA全长,命名为CsGID1a (GenBank登录号为JX235369)。该基因全长1411 bp,开放阅读框1 023 bp,编码341个氨基酸。生物信息学分析显示,CsGID1a编码的蛋白分子量为38.53 kD,理论等电点为5.62;无信号肽位点,是非分泌性蛋白,具有1个跨膜区,基因被定位于细胞核内;CsGID1a氨基酸序列具有激素敏感性脂肪酶(HSL)家族蛋白的HGG、GXSXG功能域以及羧酸酯酶典型的三级结构;与其他物种的GID1相似性均在60%以上,与葡萄的相似性最大达87%、进化关系最近。荧光定量PCR结果显示,高浓度(1.0×10–5 mol L–1)GA3能够下调CsGID1a的表达,5 h内的表达呈下降趋势;随着越冬茶芽萌动进程,CsGID1a表达量逐渐降低,特别在3月初萌发以后变化较大,推测赤霉素及其受体基因可能与茶树越冬芽解休眠相关。
[1]Olszewski N, Sun T P, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell, 2002, 14(Suppl): 61–80[2]Ueguchi-Tanaka M, Matsuoka M. The perception of gibberellins: clues from receptor structure. Curr Opin Plant Biol, 2010, 13: 503–508[3]Yue C(岳川), Zeng J-M(曾建明), Cao H-L(曹红利), Wang X-C(王新超), Zhang Z-F(章志芳). The gibberellins metabolism and signaling pathway in higher plant. Plant Physiol J (植物生理学报), 2012, 2: 118–128 (in Chinese with English abstract)[4]Hedden P. Gibberellins close the lid. Nature, 2008, 456: 455–456[5]Murase K, Hirano Y, Sun T P, Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 2008, 456: 459–464[6]Sun T P. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol, 2010, 154: 567–570[7]Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18: 3399–3414[8]Fu X D, Richards D E, Fleck B, Xie D X, Burton N, Harberd N P. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell, 2004, 16: 1406–1418[9]Dill A, Thomas S G, Hu J, Steber C M, Sun T P. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004, 16: 1392–1405[10]Santner A, Li C V, Estelle M. Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol, 2009, 5: 301–307[11]Kakkar R K, Nagar P K. Distribution and changes in endogenous polyamines during winter dormancy in tea (Camellia sinensis (L.) O. Kuntze). Plant Physiol, 1997, 151: 63–67[12]Nagar P K, Kumar A. Changes in endogenous gibberellin activity during winter dormancy in tea (Camellia sinensis (L.) O. Kuntze). Acta Physiol Plant, 2000, 22: 439–443[13]Gupta D, Bhardwaj R, Nagar P K, Kaur S. Isolation and characterization of brassinosteroides from leaves of Camellia sinensis (L.) O. Kuntze. Plant Growth Regul, 2004, 42: 97–100[14]Wang X-C(王新超). Identification and Expression Analysis of Genes Associated with the Bud Dormancy and Its Release of Tea Plant (Camellia sinenesis). PhD Thesis of Chinese Academy of Agricultural Sciences, 2011 (in Chinese with English abstract)[15]Wang X-C(王新超), Ma C-L(马春雷), Yang Y-J(杨亚军), Ma J-Q(马建强), Cao H-L(曹红利). cDNA cloning and expression analysis of cyclin-dependent kinase(CsCDK)gene in tea plant. Acta Hort Sin (园艺学报), 2012, 39(2): 333–342 (in Chinese with English abstract)[16]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739[17]Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASyserver. Walker J M ed. The Proteomics Protocols Handbook. New York: Humana Press, 2005. pp 571–607[18]Bendtsen J D, Nielsen H, Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 2004, 340: 783–795[19]Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Appl Biosci, 1995, 11: 681–684[20]Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S. Analysis and prediction of leucine-rich nuclear export signals. Protein Engin Design Select, 2004, 17: 527–536[21]Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics, 2006, 22: 195–201[22]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402-408[23]Ueguchi-Tanaka M, Nakajima M, Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. Annual Rev Plant Biol, 2007, 58: 183–198[24]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Yi, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698[25]Østerlund T. Structure-function relationships of hormone-sensitive lipase. Eur J Biochem, 2001, 268: 1899–1907[26]Ileperuma N R, Marshall S D, Squire C J, Squire J C, Baker H M, Oakeshott J G, Russell R J, Plummer K M, Newcomb R D, Baker E N. High-resolution crystal structure of plant carboxylesterase AeCXE1, from Actinidia eriantha, and its complex with a high-affinity inhibitor paraoxon. Biochemistry, 2007, 46: 1851–1859[27]Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M. Structural basis for gibberellin recognition by its receptor GID1. Nature, 2008, 456: 520–524[28]Nakajima M, Shimada A, Takashi Y, Kim Y C, Park S H, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguch I. Identification and characterization of Arabidopsis gibberellins Receptors. Plant J, 2006, 46: 880–889[29]Voegele A, Linkies A, Muller K, Leubner-Metzger G. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. J Exp Bot, 2011, 62: 5131–5147[30]Li H P, Wang Y, Li X C, Gao Y, Wang Z J, Zhao Y, Wang M L. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol Biol Rep, 2011, 38: 191–197[31]Mauriat M, Moritz T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J, 2009, 58: 989–1003[32]Willige B C, Ghosh S, Nill C, Dohmann E M N, Maier A, Schwechheimer C. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19: 1209–1220[33]Iuchi S, Suzuki H, Kim Y C, Iuchi A, Kuromori T, Ueguchi-Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J, 2007, 50: 958–966[34]Ueguchi-Tanaka M, Hirona K, Hasegawa Y, Kitano H, Matsuoka M. Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. Plant Cell, 2008, 20: 2437–2446[35]Ariizumi T, Murase K, Sun T P, Steber C M. Proteolysis in dependent down regulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSE NSITIVE DWARF 1. Plant Cell, 2008, 20: 2447–2459[36]Yamamoto Y, Hirai T, Yamamoto E, Kawamura M, Sato T, Kitano H, Matsuoka M, Ueguchi-Tanaka M. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. Plant Cell, 2010, 11: 3589–602[37]Gao Y, Chen J M, Zhao Y, Li T, Wang M. Molecular cloning and expression analysis of a RGA-like gene responsive to plant hormones in Brassica napus. Mol Biol Rep, 2012, 39: 1957–1962[38]Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H, Tanahashi T, Hasebe M, Banks J A, Ashikari M, Kitano H, Ueguchi-Tanaka M, Matsuoka M. The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell, 2007, 19: 3058–3079[39]Tyler L, Thomas S G, Hu J H, Dill A, Alonso J M, Ecker J R, Sun T P. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol, 2004, 135: 1008–1019 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[3] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[4] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[5] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[6] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[7] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[8] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[9] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[10] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[11] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
[12] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[13] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
[14] | 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2a和GmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032. |
[15] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
|