欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 626-631.doi: 10.3724/SP.J.1006.2013.00626

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻矮秆脆性突变体dbc1的鉴定与基因定位

桑贤春,杜川,王晓雯,杨正林,凌英华,赵芳明,李云峰,何光华*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室 / 南方山地农业教育部工程研究中心,重庆400716
  • 收稿日期:2012-09-03 修回日期:2012-11-16 出版日期:2013-04-12 网络出版日期:2013-01-04
  • 通讯作者: 何光华, E-mail: hegh@swu.edu.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08001-002)和重庆市科技攻关计划项目(CSTC2012GGc80002)资助。

Identification and Gene Mapping of Dwarf and Brittle Culm Mutant dbc1 in Oryza sativa

SANG Xian-Chun,DU Chuan,WANG Xiao-Wen,YANG Zheng-Lin,LING Ying-Hua,ZHAO Fang-Ming,LI Yun-Feng,HE Guang-Hua*   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratroy of Application and Safety Control of Genetically Modified Crops / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China
  • Received:2012-09-03 Revised:2012-11-16 Published:2013-04-12 Published online:2013-01-04
  • Contact: 何光华, E-mail: hegh@swu.edu.cn

摘要:

利用EMS诱变籼型水稻恢复系缙恢10号,获得一个稳定遗传的矮化脆性突变体dbc1,苗期即表现矮化、叶片变脆,一直保持到成熟。与原始亲本相比,突变体的各节间均显著缩短,株高仅58.93 cm,略有包穗,属于dn型矮化变异,对赤霉素的敏感性显著下降,有效穗、千粒重和结实率无明显变化,穗长、穗粒数和实粒数则极显著下降。进一步分析发现,dbc1的茎秆和叶片的载荷强度极显著下降,纤维素含量无变化,木质素含量则略有下降,差异达显著水平。遗传分析表明该性状受1对隐性核基因调控,利用886株西农1A/dbc1F2变异单株,最终把DBC1基因定位在第2染色体SSR标记RM13943RM13952之间,物理距离仅197 kb,含有52个注释基因。这为下一步调控基因的克隆和dbc1材料的育种应用奠定了基础。

关键词: 水稻, 矮秆, 脆性, 赤霉素钝感, 基因定位

Abstract:

One dwarf and brittle culm mutant dbc1 was identified from the progeny of restorer line Jinhui10 which seeds were treated by ethyl methanesulfonate (EMS). From the seedling stage to the mature stage, dbc1 showed obvious characteristics of dwarfism and frangibility. In detail, the mutantshortened each internode with a plant height of 58.93 cm, belonging to the dn type of dwarfism mutation. Treated by GA3, the dbc1 showed more insensitive compared with its original parent Jinhui10. One thousand grain weight, seed-setting rate, and tiller numbers did not change while panicle length, grain number per panicle and full grain number decreased significantly in the mutant. Further analysis showed that mechanical strengths declined significantly in the mutational leaf blades and culms. Interestingly, cellulose content was not changed and lignin content slightly decreased compared with those of wild type, with a significant difference at P<0.05 between them. Genetic analysis indicated that the mutation was controlled by one recessive nuclear gene. In this paper, DBC1 gene was finally mapped between SSR markers RM13943 and RM13952 on chromosome 2 based on 886 F2 mutational plants of Xinong1A/dbc1. In the restricted region, the physical distance was 197 kb and contained 52 annotated genes. These results provide a foundation for DBC1 gene cloning and its application in the molecular breeding.

Key words: Rice (Oryza sativa), Dwarf, Brittle culms, Gibberellins-insensitive, Gene mapping

[1]Hu J(胡江), Zeng D-L(曾大力), Zhang G-H(张光恒), Guo L-B(郭龙彪), Dong G-J(董国军), Gao Z-Y(高振宇), Hu X-M(胡兴明), Zhu L(朱丽), Liu J(刘坚), Qian Q(钱前). Genetic analysis and gene mapping of a new mutant of dwarf and disproportionate uppermost-internodel (ddul) in rice. Chin J Rice Sci (中国水稻科学), 2009, 23 (3): 252–256 (in Chinese with English abstract)



[2]Liang G H, Cao X Y, Sui J M, Zhao X Q, Yan C J, Yi C D, Gu M H. Fine mapping of a semidwarf gene sd-g in indica rice (Oryza sativa L.). Chin Sci Bull, 2004, 49(9): 900–904



[3]Zhang F-T(张帆涛), Fang J(方军), Sun C-H(孙昌辉), Li R-B(李润宝), Luo X-D(罗向东), Xie J-K(谢建坤), Deng X-J(邓晓建), Chu C-C(储成才). Characterization of a rice dwarf and twist leaf 1 (dtl1) mutant and fine mapping of DTL1 gene. Hereditas (Beijing) (遗传), 2012, 34(1): 79–86 (in Chinese with English abstract)



[4]Wei C-X(韦存虚), Xie P-S(谢佩松), Zhou W-D(周卫东), Chen Y-F(陈义芳), Yan C-J(严长杰). Anatomical structure and chemical features of leaf in brittle mutant of rice. Acta Agron Sin (作物学报), 2008, 34(8): 1417–1423 (in Chinese with English abstract)



[5]Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M. BRITTLE CULM 1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell, 2003, 15: 2020–2031



[6]Updegraff D M. Semimicro determination of cellulose in biological materials. Anal Biochem, 1969, 32: 420–424



[7]Musel G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V, Schopfer P. Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta, 1997, 201: 146–159



[8]Lichtenthaler H K. Hlorophylls and carotenoids pigments of photosynthetic biomenbranes. Meth Enzymol, 1987, 48: 350–382



[9]Michelmore R M, Papan I, Kesseli R V. Identification of marks linked to disease resistance genes by bulked segregant analysis: A rapid method to detect marks in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[10]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing) (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)



[11]Davies P J, ed. Plant Hormones: Physiology, Biochemistry and Molecular Biology. The Netherlands: Kluwer Academic Publishers, 1995. pp 13–38



[12]Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal G, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. An overview of gibberellin metabolism enzyme genes and their related mutant in rice. Plant Physiol, 2004, 134: 1642–1653



[13]Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semi-dwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17



[14]Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Mtsuoka M. Cloning and functional analysis of two gibberellin 3B- hydroxylase genes that are differently expressed during the growth of rice. Proc Nat1 Acad Sci USA, 2001, 98(15): 8909–89014



[15]Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54: 533–547



[16]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Ghow T, C. Hising Y, Kitano H, Yamaguchi I, Matsuoka M. Gibberellin insensitive Dwarf1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698



[17]Itoh H, Ueguchi Tanaka M, Sato Y, Ashikri M, Matsuoka M. The gibberellin signaling pathway is regulated by the appearance and disappearance of SL ENDER rice in nuclei. Plant cell, 2002, 14: 57–70



[18]Ashikari M, Itoh H, Ueguchi-Tanaka M, Akie S, Kenji G, Hidemi K, Makoto M. Gibberellin signal transduction in rice. J Plant Growth Regul, 2003, 22: 141–151



[19]Ikeda A, Ueguchi Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. Slender rice, a constitution gibberellin response mutant, is caused by a null mutation on of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 2001, 13: 999–1010



[20]Gao Z-Y(高振宇), Liu X-H(刘晓辉), Guo L-B (郭龙彪), Liu J (刘坚), Dong G-J(董国军), Hu J(胡江), Han B(韩斌), Qian Q(钱前). Identification of a novel tillering dwarf mutant and fine mapping of the tddl(t) gene in rice (Oryza sativa L.). Chin Sci Bull (科学通报), 2009, 54(9): 1238–1243 (in Chinese)



[21]Wang F(王峰), Tang Y-Q(唐彦强), Miao R-L(苗润隆), Xu F-F(徐芳芳), Lin T-T(林婷婷), He G-H(何光华), Sang X-C(桑贤春). Identification and gene mapping of a narrow and upper-albino leaf mutant in rice (Oryza sativa L.). Chin Sci Bull (科学通报), 2012, 57(22): 2066–2071 (in Chinese)



[22]Crowell E F, Gonneau M, Stierhof Y D, Höfte H, Vernhettes S. Regulated trafficking of cellulose synthases. Curr Opin Plant Biol, 2010, 13: 700–705



[23]Zhang B C, Zhou Y H. Rice brittleness mutants: A Way to open the ‘BlackBox’ of monocot cell wall biosynthesis. J Integr Plant Biol, 2011, 53 (2): 136–142



[24]Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z. Brittle Culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 2012, 159(4): 1440–1452



[25]Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011, 108(12): 5110–5115



[26]Zhou Y H, Li S B, Qian Q, Zeng D L, Zhang M, Guo L B, Liu X L, Zhang B C, Deng L W, Liu X F, Luo G Z, Wang X J, Li J Y. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). Plant J, 2009, 57: 446–462



[27]Wang C-L(王川丽), Wang L-Q(王令强), Mou T-M(牟同敏). Characterization and gene mapping of a brittle culm mutant nbc1(t) in rice. J Huazhong Agric Univ (华中农业大学学报), 2012, 31(2): 159–164 (in Chinese with English abstract)



[28]Zhang S-J(张水金), Zheng Y(郑轶), Zhu Y-S(朱永生), Yang D(杨东), Tu S-H(涂诗航), Zhou P(周鹏), Zheng J-T(郑家团), Huang T-X(黄庭旭). Advance in research on brittleness mutant of rice. Fujian J Agric Sci (福建农业学报), 2011, 26(5): 895–898 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!