欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 617-625.doi: 10.3724/SP.J.1006.2013.00617

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于染色体单片段代换系的水稻粒形QTL定位

王军1,朱金燕1,周勇2,杨杰1, 范方军1,李文奇1,梁国华2,*,仲维功1,*   

  1. 1 江苏省农业科学院粮食作物研究所 / 国家水稻改良中心南京分中心,江苏南京210014;2 扬州大学农学院 / 江苏省遗传生理重点实验室 / 教育部植物功能基因组学重点实验室,江苏扬州225009
  • 收稿日期:2012-08-24 修回日期:2012-12-08 出版日期:2013-04-12 网络出版日期:2013-01-28
  • 通讯作者: 仲维功, E-mail: wgzhong0503@yahoo.com.cn?; 梁国华, E-mail: ricegb@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31101131), 国家科技支撑计划重大项目(2011BAD16B03), 江苏省自然科学基金项目(BK2011666), 高等学校博士学科点专项科研基金项目(20103250110004), 江苏省科技支撑计划项目(BE2012309)和江苏省农业自主创新资金[CX(12)5017]资助。

Mapping of QTLs for Grain Shape Using Chromosome Single Segment Substitution Lines in Rice (Oryza sativa L.)

WANG Jun1,ZHU Jin-Yan1,ZHOU Yong2,YANG Jie1,FAN Fang-Jun1,LI Wen-Qi1,LIANG Guo-Hua2,*,ZHONG Wei-Gong1,*   

  1. 1 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China; 2 Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Function Genomics, Ministry of Education Yangzhou University, Yangzhou 225009, China
  • Received:2012-08-24 Revised:2012-12-08 Published:2013-04-12 Published online:2013-01-28
  • Contact: 仲维功, E-mail: wgzhong0503@yahoo.com.cn?; 梁国华, E-mail: ricegb@yzu.edu.cn

摘要:

水稻的粒形是影响水稻产量和品质的重要因子之一, 是由多基因控制的数量性状。染色体单片段代换系由于减少了个体间遗传背景的干扰, 已经成为鉴定复杂性状QTL的新型遗传材料。本研究以广陆矮4号为受体,日本晴为供体的119个染色体单片段代换系群体为试验材料,通过单因素方差分析和Dunnett’s多重比较,测验单片段代换系与受体亲本之间粒形的差异,鉴定了代换片段上粒形相关的QTL。以P0.001为阈值, 共检测到39个粒形相关的QTL。其中,粒长相关的19个,其加性效应值为0.18~1.06 mm,加性效应百分率为2.40%~14.13%;粒宽相关的14个,其加性效应值为0.09~0.31 mm,加性效应百分率为2.71%~9.15%;粒厚相关的6个,其加性效应值为0.05~0.10 mm,加性效应百分率为2.14%~4.46%。这些QTL的鉴定,为进一步精细定位并克隆相应QTL和高产、优质水稻新品种的分子标记辅助选择奠定了基础。

关键词: 水稻, 单片段代换系, 数量性状, 粒形, 代换作图

Abstract:

Grain shape is one of the important factors determining rice yield and grain quality, it is a typical quantitative trait controlled by multiple genes. As novel research material, chromosome single segment substitution lines are useful in QTL identification because of minimizing the interference of genetic background among plants. In this study, QTLs for grain shape were identified with 119 rice chromosome single segment substitution lines derived from Nipponbare as donor parentin the background of Guanglu’ai 4 by one-way analysis of variance and Dunnett’s test for means comparisons between chromosome single segment substitution lines and the recipient parent Guanglu’ai 4.A total of 39 QTLs for grain shape were identified on 11 chromosomes except chromosome 10 with a significance of P≤0.001. Among them, 19 QTLs were identified for grain length, with the additive effect from 0.18 mm to 1.06 mm and the additive effect percentages from 2.40% to 14.13%; 14 QTLs were identified for grain width, with the additive effect from 0.09 mm to 0.31 mm and the additive effect percentages from 2.71% to 9.15%; and 6 QTLs were identified for grain thickness, with the additive effect from 0.05 mm to 0.10 mm and the additive effect percentages from 2.14% to 4.46%. The results are important for the QTLs cloning and molecular breeding of rice grain shape.

Key words: Rice, Chromosome single segment substitution lines, Quantitative trait loci, Grain shape, Substitution mapping

[1]Wu S-H(吴绍洪), Li R-S(李荣生). Food demand, ensure and countermeasures for China in the next 30 years. Prog Geogr (地理科学进展), 2002, 21(2): 121–129 (in Chinese with English abstract)



[2]Xu Z-J(徐正进), Chen W-F(陈温福), Ma D-R(马殿荣), Lü Y-N(吕英娜), Zhou S-Q(周淑清), Liu L-X(刘丽霞). Correlations between rice grain shapes and main qualitative characteristics. Acta Agron Sin (作物学报), 2004, 30(9): 894–900 (in Chinese with English abstract)



[3]Yang L-S(杨联松), Bai Y-S(白一松), Xu C-W(许传万), Hu X-M(胡兴明), Wang W-M(王伍梅). Research on the correlation between rice grain shape and rice grain quality. J Anhui Agric (安徽农业科学), 2001, 29(3): 312–316 (in Chinese with English abstract)



[4]Lin H-X(林鸿宣), Min S-K(闵绍楷), Xiong Z-M(熊振民), Qian H-R(钱惠荣), Zhuang J-Y(庄杰云), Lu J(陆军), Zheng K-L(郑康乐), Huang N(黄宁). RFLP mapping of QTLs for grain shape traits in indica rice (Oryza sativa L. subsp. indica). Sci Agric Sin (中国农业科学), 1995, 28(4): 1–7 (in Chinese with English abstract)



[5]Xing Y-Z(邢永忠), Tan Y-F(谈移芳), Xu C-G(徐才国), Hua J-P(华金平), Sun X-L(孙新立). Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin (植物学报), 2001, 43(8): 840–845 (in Chinese with English abstract)



[6]Yang L-S(杨联松), Bai Y-S(白一松), Xu C-W(许传万), Hu X-M(胡兴明), Wang W-M(王伍梅), She D-H(佘德红), Chen G-Z(陈桂芝). Research progress of rice grain type and its inheritance. J Anhui Agric (安徽农业科学), 2001, 29(2): 164–167 (in Chinese with English abstract)



[7]Wu C-M(吴长明), Sun C-Q(孙传清), Chen L(陈亮), Li Z-C(李自超), Wang X-K(王象坤). Analysis QTL of grain shape by using of RFLP map in rice. J Jilin Agric Sci (吉林农业科学), 2002, 27(5): 3–7 (in Chinese with English abstract)



[8]Zhang G-H(张光恒), Zhang G-P(张国平), Qian Q(钱前), Xu L-P(徐律平), Zeng D-L(曾大力), Teng S(滕胜), Bao J-S(包劲松). QTL analysis of grain shape traits in different environments. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 16–22 (in Chinese with English abstract)



[9]Li M-M(黎毛毛), Xu L(徐磊), Ren J-F(任军芳), Cao G-L(曹桂兰), Yu L-Q(余丽琴), He H-H(贺浩华), Han L-Z(韩龙植), Koh H-J(高熙宗). Identification of quantitative trait loci for grain traits in japonica rice. Sci Agric Sin (中国农业科学), 2009, 42(7): 2255–2261 (in Chinese with English abstract)



[10]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171



[11]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630



[12]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023–1028



[13]Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18: 1199–1209



[14]Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266–1269



[15]Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, DOI:10.1038/ng.2327



[16]Liu G-M(刘冠明), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang Z-M(张泽民), Zhang G-Q(张桂权). Identification of QTLs on substituted segments in single segment substitution lines of rice. Acta Genet Sin (遗传学报), 2004, 31(12): 1395–1400 (in Chinese with English abstract)



[17]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162



[18]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13



[19]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124: 735–742



[20]Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77: 95–101



[21]Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali A J. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica, 2004, 137: 325–332



[22]Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005, 110: 1334–1346



[23]Wan X-Y(万向元), Liu S-J(刘世家), Wang C-M(王春明), Jiang L(江玲), Zhai H-Q(翟虎渠), Yoshimura A, Wan J-M(万建民). Stable expression of QTL for grain shape of milled rice (Oryza sativa L.) using a CSSLs population. Acta Genet Sin (遗传学报), 2004, 31(11): 1275–1283 (in Chinese with English abstract)



[24]Zeng R-Z(曾瑞珍), Talukdar A, Liu F(刘芳), Zhang G-Q(张桂权). Mapping of the QTLs for grain shape using single segment substitution lines in rice. Sci Agric Sin (中国农业科学), 2006, 39(4): 647–654 (in Chinese with English abstract)



[25]Zhu W-Y(朱文银), Yang D-W(杨德卫), Lin J(林静), Zhao L(赵凌), Zhang Y-D(张亚东), Zhu Z(朱镇), Chen T(陈涛), Wang C-L(王才林). Substitution mapping of QTLs for grain shape using chromosome segment substitution lines in rice (Oryza sativa L.) Jiangsu J Agric Sci (江苏农业学报), 2008, 24(3): 226–231 (in Chinese with English abstract)



[26]Li S-Q(李生强), Cui G-K(崔国昆),关成冉(Guan C-R), Wang J(王俊), Liang G-H(梁国华). QTL detection for rice grain shape using chromosome single segment substitution lines. Chin J Rice Sci (中国水稻科学), 2011, 25(2): 163–168 (in Chinese with English abstract)



[27]Zhao F-M(赵芳明), Zhang G-Q(张桂权), Zeng R-Z(曾瑞珍), Yang Z-L(杨正林), Ling Y-H(凌英华), Sang X-C(桑贤春), He G-H(何光华). Analysis of epistatic and additive effects of QTLs for grain shape using single segment substitution lines in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2011, 37(3): 469–476 (in Chinese with English abstract)



[28]Xu J-J(徐建军), Zhao Q(赵强), Tang Z-X(汤在祥), Zhao Y-F(赵元凤), Zhu L(朱磊), Xu C-W(徐辰武), Gu M-H(顾铭洪), Han B(韩斌), Liang G-H(梁国华). Mapping of QTLs for gain shape using whole-genome resequenced chromosome segment substitution lines in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(4): 365–369 (in Chinese with English abstract)



[29]Zhang Q(张强), Yao G-X(姚国新), Hu G-L(胡广隆), Tang B(汤波), Chen C(陈超), Li Z-C(李自超). Identification of QTLs for grain traits in rice using extreme materials in grain size. Acta Agron Sin (作物学报), 2011, 37(5): 784–792 (in Chinese with English abstract)



[30]Yao G-X(姚国新), Li J-J(李金杰), Zhang Q(张强), Hu G-L(胡广隆), Chen C(陈超), Tang B(汤波), Zhang H-L(张洪亮), Li Z-C(李自超). Mapping QTLs for grain weight and shape using four sisters near isogenic lines in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(8): 1310–1317 (in Chinese with English abstract)



[31]Bai X F, Luo L J, Yan W H, Kovi M R, Zhan W, Xing Y Z. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet, 2010, 11: 16–26



[32]Shao G N, Tang S Q, Luo J, Jiao G A, Wei X J, Tang A, Wu J L, Zhuang J Y, Hu P S. Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. J Genet Genomics, 2010, 37: 523–531



[33]Shi C-H(石春海), Shen Z-T(申宗坦). Inheritance and improvement of grain shape in indica rice. Chin J Rice Sci (中国水稻科学), 1995, 9(1): 27–32 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!