欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 993-1001.doi: 10.3724/SP.J.1006.2019.84122

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生AhPEPC1基因抑制表达的转基因后代转录组分析

潘丽娟1,陈娜1,陈明娜1,王通1,王冕1,陈静1,杨珍1,万勇善2,禹山林1,迟晓元1,*(),刘风珍2,*()   

  1. 1 山东省花生研究所, 山东青岛 266100
    2 山东农业大学农学院/作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2018-09-20 接受日期:2019-01-19 出版日期:2019-07-12 网络出版日期:2019-03-22
  • 通讯作者: 迟晓元,刘风珍
  • 作者简介:E-mail: panlijuan_2008@aliyun.com
  • 基金资助:
    本研究由2014年国家“万人计划”青年拔尖人才(W02070268);国家现代农业产业技术体系建设专项(CARS-13);国家自然科学基金项目(31701464);山东省自然科学基金项目(ZR2017YL017);山东省自然科学基金项目(ZR2016CM07);山东省农业科学院青年科研基金项目(2016YQN14);山东省农业科学院青年英才培养计划;山东省农业科学院农业科技创新工程(CXGC2016B02);山东省农业科学院农业科技创新工程(CXGC2018E21);青岛市应用研究专项青年专项(17-1-1-51-jch);山东省良种工程(2017LZGC003);泰山学者工程专项经费资助

Transcriptome analysis of the peanut transgenic offspring with depressing AhPEPC1 gene

PAN Li-Juan1,CHEN Na1,Ming-CHEN Na1,WANG Tong1,WANG Mian1,CHEN Jing1,YANG Zhen1,WAN Yong-Shan2,YU Shan-Lin1,CHI Xiao-Yuan1,*(),LIU Feng-Zhen2,*()   

  1. 1 Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2 College of Agronomy, Shandong Agricultural University / National Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;
  • Received:2018-09-20 Accepted:2019-01-19 Published:2019-07-12 Published online:2019-03-22
  • Contact: Xiao-Yuan CHI,Feng-Zhen LIU
  • Supported by:
    This study was supported by the Grants from the National Ten Thousand Youth Talents Plan of 2014(W02070268);the China Agriculture Research System(CARS-13);the National Natural Science Foundation of China(31701464);the Natural Science Foundation of Shandong Province(ZR2017YL017);the Natural Science Foundation of Shandong Province(ZR2016CM07);the Youth Scientific Research Foundation of Shandong Academy of Agricultural Sciences(2016YQN14);Young Talents Training Program of Shandong Academy of Agricultural Sciences;Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016B02);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018E21);the Basic Research Project of Qingdao(17-1-1-51-jch);Improved Variety Engineering Project of Shandong Province(2017LZGC003);Taishan Scholars Project.

摘要:

磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPC)是控制油料作物种子中蛋白质/油脂含量比率的一个关键酶。本研究检测了花生AhPEPC1基因抑制表达的转基因株系种子含油量, 与非转基因花生相比, 转基因花生种子含油量提高了5.7%~10.3%。利用转录组测序(RNA-Seq)技术分析花生中AhPEPC1基因的抑制表达是否影响其他基因的功能。结果表明, 转录组分析筛选到110个基因差异表达, 其中25个基因上调表达, 85个基因表达下调。对110个差异表达基因进行了KEGG富集分析, 其中有34个基因成功获得了KEGG注释, 发现氨基酸的生物合成途径中有2个基因(Aradu.M0JX8, Aradu.FE0Z7)下调表达。利用荧光定量PCR分析了15个DEG (differential expressed gene)在非转基因对照和转基因花生种子中的表达情况, 发现其趋势与转录组测序结果基本一致。研究结果可在一定程度上解析AhPEPC1基因调控花生种子含油量的分子机制。

关键词: 花生, AhPEPC1基因, 转基因, 转录组分析

Abstract:

Phosphoenolpyruvate carboxylase is considered as a key enzyme to control the ratio of protein to lipid of oilseeds. In this study, the antisense expression of the peanut PEPC isoform 1 (AhPEPC1) gene increased the lipid content by 5.7%-10.3% compared with the non-transgenic control. The high-throughput sequencing technology — RNA-Seq was used to analyze whether the inhibitory expression of AhPEPC1 gene in peanut affected the function of other genes. The results showed that 110 genes were differentially expressed, of which 25 genes were up-regulated and 85 genes were down-regulated. KEGG enrichment analysis was performed on 110 differentially expressed genes, among which 34 genes were successfully obtained KEGG annotation, and two genes (Aradu.M0JX8 and Aradu.FE0Z7) were down-regulated in the biosynthesis pathway of amino acids. Fifteen DEGs between non-transgenic control and transgenic peanut seeds were selected to analyze the gene expression levels using qRT-PCR. The results of qRT-PCR agreed well with most findings from RNA-seq analysis. This research might resolve to some extent the molecular mechanisms of AhPEPC1 gene regulating oil content of peanut seeds.

Key words: peanut, AhPEPC1 gene, transgenic, transcriptome analysis

表1

荧光定量PCR的引物序列"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
Aradu.2N2A3-F TTCATTCATCCCCCTTTTCAG Aradu.CZ64T-F GGAGTAAACGACCCGATAAGC
Aradu.2N2A3-R GGCTGGTTTTGGTTGCTCC Aradu.CZ64T-R GTCCTACGATGCCCGAGAACG
Aradu.32P5Q-F TTGTTTTTGGGTCGGTTGA Aradu.FE0Z7-F TTTTCTCCGCACTCACCTAA
Aradu.32P5Q-R TTAGGTGTTGTGTAGGGTG Aradu.FE0Z7-R TGCCGACTCTTCTTCACCTT
Aradu.38MP3-F TGATTGGTGTGGTGTGTTGC Aradu.G395P-F CGTTCTTGGTGTCCCTGTG
Aradu.38MP3-R CTCCTTATGTGTTCGTGTTTTG Aradu.G395P-R TTCCTTGTGCTTGAGCCTT
Aradu.3UA04-F AGTGAAAATAAGGGAAAGAC Aradu.JE7IW-F GCAATTTGTCCTGATGACCCTA
Aradu.3UA04-R CAACTGAAACTAAACGGGAT Aradu.JE7IW-R CCTCCACTGTGCTCCTCCCT
Aradu.8XK1K-F CTCAAGCGTTCTGCATTGCC Aradu.M0JX8-F CCATTCATGTCTTCGTCGT
Aradu.8XK1K-R CCCTGAAGAGTTTTCCCCCA Aradu.M0JX8-R CTCTTCTTCACCTTCTGCG
Aradu.91JGK-F ATTCAACGAGTTATCCACGG Aradu.PU7RJ-F AGAGGAAGGGTTATGCATT
Aradu.91JGK-R GGATTCCACAACATCAGCAG Aradu.PU7RJ-R AACTTTCGATTTGGGGCTG
Aradu.94LL9-F ATTGAAAGTGGTGGCGAAGT Aradu.Y0LYZ-F GGTGGTGTCACTGCTGGTA
Aradu.94LL9-R TTGACGGAATGGGTGAGG Aradu.Y0LYZ-R GAACTCGTGGCATTGTCC
Aradu.AAS86-F TGGGCTTCCAGGAGTTACAGG β-actin-F TTGGAAT GGGTCAGAAGGATGC
Aradu.AAS86-R GTTCTTCCAGTGTCCACAGTGT β-actin-R AGTGGTGCCTCAGTAAGAAGC

图1

转基因株系和对照花生种子含油量(A)、蛋白含量(B)和脂肪酸含量(C) WT: 对照; L6、L11、L21: 转基因株系。a、b、c、d的柱值在处理间差异显著(P = 0.05)。"

图2

基因表达维恩图 WT: 对照; TL: 转基因株系。每个大圆圈中的数字之和代表该group表达了的基因总个数, 圆圈交叠的部分表示group之间共有的表达基因。"

图3

差异基因火山图 Padj < 0.05为差异基因筛选标准。有显著性差异表达的基因用红色点(上调)和绿色点(下调)表示, 无显著性差异表达的基因用蓝色点表示。"

图4

GO富集分类图 纵坐标为富集的GO term, 横坐标为该term中差异基因个数。绿色表示生物过程, 橙色表示细胞组分, 紫色表示分子功能。"

表 2

差异基因KEGG富集情况"

条目
Term
数据库
Database
编号
ID
差异基因个数
Sample number
调控模式Regulation 注释基因个数
Background number
显著水平
P-value
矫正显著水平
Corrected P-value
Photosynthesis - antenna proteins KEGG PATHWAY adu00196 2 Up 18 0.000093 0.000560
Purine metabolism KEGG PATHWAY adu00230 2 Up 194 0.008769 0.026306
DNA replication KEGG PATHWAY adu03030 1 Up 90 0.065891 0.116645
Peroxisome KEGG PATHWAY adu04146 1 Up 107 0.077763 0.116645
Pyrimidine metabolism KEGG PATHWAY adu00240 1 Up 140 0.100427 0.120512
Metabolic pathways KEGG PATHWAY adu01100 2 Up 2197 0.508576 0.508576
Selenocompound metabolism KEGG PATHWAY adu00450 2 Down 20 0.000926 0.015741
Cysteine and methionine metabolism KEGG PATHWAY adu00270 2 Down 108 0.021504 0.182780
Stilbenoid, diarylheptanoid and gingerol biosynthesis KEGG PATHWAY adu00945 1 Down 18 0.038622 0.218860
Base excision repair KEGG PATHWAY adu03410 1 Down 46 0.092940 0.284623
Biosynthesis of amino acids KEGG PATHWAY adu01230 2 Down 250 0.095036 0.284623
Phenylalanine metabolism KEGG PATHWAY adu00360 1 Down 50 0.100455 0.284623
Flavonoid biosynthesis KEGG PATHWAY adu00941 1 Down 62 0.122643 0.297848
RNA degradation KEGG PATHWAY adu03018 1 Down 111 0.207912 0.441813
Pyrimidine metabolism KEGG PATHWAY adu00240 1 Down 140 0.254567 0.471897
RNA transport KEGG PATHWAY adu03013 1 Down 166 0.294144 0.471897
Plant-pathogen interaction KEGG PATHWAY adu04626 1 Down 182 0.317487 0.471897
Phenylpropanoid biosynthesis KEGG PATHWAY adu00940 1 Down 193 0.333104 0.471897
Endocytosis KEGG PATHWAY adu04144 1 Down 217 0.365995 0.478609
Plant hormone signal transduction KEGG PATHWAY adu04075 1 Down 314 0.483750 0.543526
Biosynthesis of secondary metabolites KEGG PATHWAY adu01110 3 Down 1282 0.505639 0.543526
Ribosome KEGG PATHWAY adu03010 1 Down 340 0.511554 0.543526
Metabolic pathways KEGG PATHWAY adu01100 4 Down 2197 0.693074 0.693074

图5

氨基酸生物合成途径的转录变化"

图6

氨基酸合成途径中基因相对表达量"

表3

RNA-seq与RT-PCR验证倍数差别"

基因编号
Gene ID
基因描述
Gene description
RNA-seq变化倍数
RNA-seq fold change
调控模式
Regulation
RT-PCR变化倍数
RT-PCR fold change
Aradu.2N2A3 Protein IQ-DOMAIN 14 53.7 Up 2.2
Aradu.32P5Q Transketolase, chloroplastic 164.3 Down 2.1
Aradu.38MP3 61.8 Up 1.7
Aradu.3UA04 Pollen-specific protein SF21 11.2 Down 16.8
Aradu.8XK1K DNA polymerase alpha catalytic subunit 2.3 Up 1.1
Aradu.91JGK Probable leucine-rich repeat receptor-like serine/threonine-protein kinase 10.5 Down 1.6
Aradu.94LL9 F-box/FBD/LRR-repeat protein 4.7 Up 1.9
Aradu.AAS86 ABC transporter G family member 36 2.4 Up 3.0
Aradu.CZ64T Protein FAR1-RELATED SEQUENCE 12 5.2 Down 2.4
Aradu.FE0Z7 Cystathionine beta-lyase, chloroplastic 137.4 Down 1.4
Aradu.G395P Copper-transporting ATPase PAA1, chloroplastic 30.4 Down 1.5
Aradu.JE7IW Pollen-specific protein SF21 25.1 Down 2.9
Aradu.M0JX8 Cystathionine beta-lyase, chloroplastic 201.1 Down 2.0
Aradu.PU7RJ MADS-box transcription factor 6 2.9 Down 3.4
Aradu.Y0LYZ Myb-like protein 2.0 Up 2.4
[1] 万书波 . 花生产业形势与对策. 山东农业科学, 2014,46(10):128-132.
Wan S B . Situation and developing strategies of peanut industry. Shandong Agric Sci, 2014,46(10):128-132 (in Chinese with English abstract).
[2] Chen X, Li H, Pandey M K, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan A W, Zhu F, Zhang X, Pan L, Pierce G J, Zhou G, Krishnamohan K A, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G Q, Sharma S, Chen N, Liu H, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z J, Paterson A H, Wang S, Liang X, Varshney R K, Yu S . Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oilbiosynthesis, and allergens. Proc Natl Acad Sci USA, 2016,113:6785-6790.
[3] Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K S, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araujo A C G, Kozik A, Do Kim K, Burow M D, Varshney R K, Wang X, Zhang X, Barkley N, Guimaraes P M, Isobe S, Guo B, Liao B, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C M, Xun X, Jackson S A, Michelmore R, Ozias-Akins P . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016,48:438-446.
[4] Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H . Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotechnol J, 2004,2:211-219.
[5] Song D, Fu J, Shi D . Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol, 2008,24:341-348.
doi: 10.1016/S1872-2075(08)60016-3
[6] 陈锦清, 郎春秀, 胡张华, 刘智宏, 黄锐之 . 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究. 农业生物技术学报, 1999,7:316-320.
Chen J Q, Lang C X, Hu Z H, Liu Z H, Huang R Z . Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus seeds. J Agric Biotechnol, 1999,7:316-320 (in Chinese with English abstract).
[7] Sugimoto T, Kawasaki T, Kato T, Whittier R F, Shibata D, Kawamura Y . cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Mol Biol, 1992,20:743-747.
doi: 10.1007/BF00046459
[8] Pan L J, Zhang J C, Chi X Y, Chen N, Chen M N, Wang M, Wang T, Yang Z, Zhang Z M, Wan Y S, Yu S L, Liu F Z . The antisense expression of AhPEPC1 increases seed oil production in peanuts(Arachis hypogaea L.). Grasas Y Aceites, 2016,67(4):e164.
[9] Sharma N, Anderson M, Kumar A, Zhang Y, Giblin E M, Abrams S R, Zaharia L I, Taylor D C, Fobert P R . Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genomics, 2008,9:619, doi: 10.1186/1471-2164-9-619.
doi: 10.1186/1471-2164-9-619
[10] Liu J, Hua W, Yang H L, Zhan G M, Li R J, Deng L B, Wang X F, Liu G H, Wang H Z . The BnGRF2 gene(GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot, 2012,63:3727-3740.
[11] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L . Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621
[12] Ruuska S A, Girke T, Benning C, Ohlrogge J B . Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell, 2002,14:1191-1206.
[13] Uhrig R G, O’Leary B, Spang H E, MacDonald J A, She Y M, Plaxton W C . Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. Plant Physiol, 2008,146:1346-1357.
doi: 10.1104/pp.107.110361
[14] Sugimoto T, Tanaka K, Monma M, Kawamura Y, Saio K . Phosphoenolpyruvate carboxylase level in soybean seed highly correlates to its contents of protein and lipid. Agric Biol Chem, 1989,53:885-887.
[15] Vazquez-Tello A, Whittier R P, Kawasaki T, Sugimoto T, Kawamura Y, Shibata D . Sequence of a soybean (Glycine max L.) phosphoenolpyruvate carboxylase cDNA. Plant Physiol, 1993,103:1025-1026.
[16] 张占琴, 王金梅, 王学军, 汪凯华, 袁春新, 麻浩 . 油菜籽粒发育过程中PEPCase活性与油脂, 蛋白质及亚基积累的特点. 中国油料作物学报, 2009,31:14-18.
Zhang Z Q, Wang J M, Wang X J, Wang K H, Yuan C X, Ma H . The characteristics of PEPCase activity and accumulation of oil, protein and major protein subunits during seed development of rape (Brassica napus). Chin J Oil Crop Sci, 2009,31:14-18 (in Chinese with English abstract).
[17] Ward J K, Tissue D T, Thomas R B, Strain B R . Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biol, 1999,5:857-867.
doi: 10.1046/j.1365-2486.1999.00270.x
[18] Nayyar H, Gupta D . Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot, 2006,58:106-113.
doi: 10.1016/j.envexpbot.2005.06.021
[19] Brown A P, Kroon J T, Swarbreck D, Febrer M, Larson T R, Graham I A, Caccamo M, Slabas A R . Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One, 2012,7:e301
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248.
[8] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!