作物学报 ›› 2019, Vol. 45 ›› Issue (7): 993-1001.doi: 10.3724/SP.J.1006.2019.84122
潘丽娟1,陈娜1,陈明娜1,王通1,王冕1,陈静1,杨珍1,万勇善2,禹山林1,迟晓元1,*(),刘风珍2,*()
PAN Li-Juan1,CHEN Na1,Ming-CHEN Na1,WANG Tong1,WANG Mian1,CHEN Jing1,YANG Zhen1,WAN Yong-Shan2,YU Shan-Lin1,CHI Xiao-Yuan1,*(),LIU Feng-Zhen2,*()
摘要:
磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPC)是控制油料作物种子中蛋白质/油脂含量比率的一个关键酶。本研究检测了花生AhPEPC1基因抑制表达的转基因株系种子含油量, 与非转基因花生相比, 转基因花生种子含油量提高了5.7%~10.3%。利用转录组测序(RNA-Seq)技术分析花生中AhPEPC1基因的抑制表达是否影响其他基因的功能。结果表明, 转录组分析筛选到110个基因差异表达, 其中25个基因上调表达, 85个基因表达下调。对110个差异表达基因进行了KEGG富集分析, 其中有34个基因成功获得了KEGG注释, 发现氨基酸的生物合成途径中有2个基因(Aradu.M0JX8, Aradu.FE0Z7)下调表达。利用荧光定量PCR分析了15个DEG (differential expressed gene)在非转基因对照和转基因花生种子中的表达情况, 发现其趋势与转录组测序结果基本一致。研究结果可在一定程度上解析AhPEPC1基因调控花生种子含油量的分子机制。
[1] | 万书波 . 花生产业形势与对策. 山东农业科学, 2014,46(10):128-132. |
Wan S B . Situation and developing strategies of peanut industry. Shandong Agric Sci, 2014,46(10):128-132 (in Chinese with English abstract). | |
[2] | Chen X, Li H, Pandey M K, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan A W, Zhu F, Zhang X, Pan L, Pierce G J, Zhou G, Krishnamohan K A, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G Q, Sharma S, Chen N, Liu H, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z J, Paterson A H, Wang S, Liang X, Varshney R K, Yu S . Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oilbiosynthesis, and allergens. Proc Natl Acad Sci USA, 2016,113:6785-6790. |
[3] | Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K S, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araujo A C G, Kozik A, Do Kim K, Burow M D, Varshney R K, Wang X, Zhang X, Barkley N, Guimaraes P M, Isobe S, Guo B, Liao B, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C M, Xun X, Jackson S A, Michelmore R, Ozias-Akins P . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016,48:438-446. |
[4] | Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H . Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotechnol J, 2004,2:211-219. |
[5] |
Song D, Fu J, Shi D . Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol, 2008,24:341-348.
doi: 10.1016/S1872-2075(08)60016-3 |
[6] | 陈锦清, 郎春秀, 胡张华, 刘智宏, 黄锐之 . 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究. 农业生物技术学报, 1999,7:316-320. |
Chen J Q, Lang C X, Hu Z H, Liu Z H, Huang R Z . Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus seeds. J Agric Biotechnol, 1999,7:316-320 (in Chinese with English abstract). | |
[7] |
Sugimoto T, Kawasaki T, Kato T, Whittier R F, Shibata D, Kawamura Y . cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Mol Biol, 1992,20:743-747.
doi: 10.1007/BF00046459 |
[8] | Pan L J, Zhang J C, Chi X Y, Chen N, Chen M N, Wang M, Wang T, Yang Z, Zhang Z M, Wan Y S, Yu S L, Liu F Z . The antisense expression of AhPEPC1 increases seed oil production in peanuts(Arachis hypogaea L.). Grasas Y Aceites, 2016,67(4):e164. |
[9] |
Sharma N, Anderson M, Kumar A, Zhang Y, Giblin E M, Abrams S R, Zaharia L I, Taylor D C, Fobert P R . Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genomics, 2008,9:619, doi: 10.1186/1471-2164-9-619.
doi: 10.1186/1471-2164-9-619 |
[10] | Liu J, Hua W, Yang H L, Zhan G M, Li R J, Deng L B, Wang X F, Liu G H, Wang H Z . The BnGRF2 gene(GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot, 2012,63:3727-3740. |
[11] |
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L . Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621 |
[12] | Ruuska S A, Girke T, Benning C, Ohlrogge J B . Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell, 2002,14:1191-1206. |
[13] |
Uhrig R G, O’Leary B, Spang H E, MacDonald J A, She Y M, Plaxton W C . Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. Plant Physiol, 2008,146:1346-1357.
doi: 10.1104/pp.107.110361 |
[14] | Sugimoto T, Tanaka K, Monma M, Kawamura Y, Saio K . Phosphoenolpyruvate carboxylase level in soybean seed highly correlates to its contents of protein and lipid. Agric Biol Chem, 1989,53:885-887. |
[15] | Vazquez-Tello A, Whittier R P, Kawasaki T, Sugimoto T, Kawamura Y, Shibata D . Sequence of a soybean (Glycine max L.) phosphoenolpyruvate carboxylase cDNA. Plant Physiol, 1993,103:1025-1026. |
[16] | 张占琴, 王金梅, 王学军, 汪凯华, 袁春新, 麻浩 . 油菜籽粒发育过程中PEPCase活性与油脂, 蛋白质及亚基积累的特点. 中国油料作物学报, 2009,31:14-18. |
Zhang Z Q, Wang J M, Wang X J, Wang K H, Yuan C X, Ma H . The characteristics of PEPCase activity and accumulation of oil, protein and major protein subunits during seed development of rape (Brassica napus). Chin J Oil Crop Sci, 2009,31:14-18 (in Chinese with English abstract). | |
[17] |
Ward J K, Tissue D T, Thomas R B, Strain B R . Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biol, 1999,5:857-867.
doi: 10.1046/j.1365-2486.1999.00270.x |
[18] |
Nayyar H, Gupta D . Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot, 2006,58:106-113.
doi: 10.1016/j.envexpbot.2005.06.021 |
[19] | Brown A P, Kroon J T, Swarbreck D, Febrer M, Larson T R, Graham I A, Caccamo M, Slabas A R . Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One, 2012,7:e301 |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[4] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[5] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[6] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[7] | 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248. |
[8] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[9] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[10] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[11] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[12] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[13] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[14] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[15] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
|