作物学报 ›› 2020, Vol. 46 ›› Issue (3): 330-340.doi: 10.3724/SP.J.1006.2020.94077
张红岩1,5,*,杨涛1,*,刘荣1,*,晋芳2,张力科2,于海天3,胡锦国4,杨峰3,王栋1,何玉华3,*(),宗绪晓1,*()
Hong-Yan ZHANG1,5,*,Tao YANG1,*,Rong LIU1,*,Fang JIN2,Li-Ke ZHANG2,Hai-Tian YU3,Jin-Guo HU4,Feng YANG3,Dong WANG1,Yu-Hua HE3,*(),Xu-Xiao ZONG1,*()
摘要:
利用基于窄叶羽扇豆转录组开发并筛选出的95对多态性EST-SSR标记, 对羽扇豆属的22个种133份资源进行全基因组扫描, 初步探究羽扇豆属下种间的进化关系, 分析来源于”旧世界”羽扇豆种间的遗传多样性, 为羽扇豆优异资源的挖掘和创新利用提供理论依据。结果表明, 用95对SSR标记共检测出1318个等位变异, 每对标记平均检测出3~37个等位变异, 平均为13.87个; 多态性信息量(PIC)变化范围0.39~0.91, 平均为0.75; 基因多样性变化范围0.41~0.92, 平均为0.78。基于邻接法(NJ)的系统发育初步探究了羽扇豆种间的进化关系, 22个羽扇豆种分别来源于”旧世界”和”新世界”, 与之前研究结果相对一致。聚类分析、群体结构分析和主成分分析结果均表明, 来源于”旧世界”的7个羽扇豆种被划分为4个组群, 各组群所包含的参试资源没有种间交叉重叠。
[1] | 郑卓杰 . 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 352-353. |
Zheng Z J. Food Legumes in China. Beijing: China Agriculture Press, 1997. pp 352-353(in Chinese). | |
[2] | Eastwood R J, Drummond C S, Schifino-Wittmann M T, Hughes C E. Diversity and evolutionary history of lupins-insights from new phylogenies. In: Palta J A, Berger J B, eds. Proceedings of the 12th international lupin conference. Western Australia: Fremantle, 2008. pp 346-354. |
[3] | Wolko B, Clements J C, Naganowska B, Nelson M N, Yang H A. Lupinus. In: Kole C, eds. Wild crop relatives: genomic and breeding resources, legume crops and forages. Berlin: Springer-Verlag, 2011. pp 153-206. |
[4] | Gladstones J S . Lupins as crop plants. Field Crop Abstracts, 1970,23:123-148. |
[5] | Wolko B, Weeden N F . Isozyme number as an indicator of phylogeny in Lupinus. Genetica Polonica, 1990,31:179-187. |
[6] | Aïnouche A, Bayer R J . Phylogenetic relationships in Lupinus(Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Am J Bot, 1999,86:590-607. |
[7] | Aïnouche A, Bayer R J, Misset M T . Molecular phylogeny, diversification and character evolution in Lupinus(Fabaceae) with special attention to Mediterranean and African lupines. Plant Syst Evol, 2004,246:211-222. |
[8] | Käss E, Wink M . Molecular phylogeny and phylogeography of Lupinus(Leguminosae) inferred from nucleotide sequences of the rbcL gene and ITS1 + 2 regions of rDNA. Plant Syst Evol, 1997,208:139-167. |
[9] | Talhinhas P, Neves-Martins J, Leitao J . AFLP, ISSR and RAPD markers reveal high levels of genetic diversity among Lupinus spp. Plant Breed, 2010,122:507-510. |
[10] | Sbabou L, Brhada F, Alami I T, Maltouf A F . Genetic diversity of Moroccan Lupinus germplasm investigated using ISSR and AFLP markers. Int J Agric Biol, 2010,12:26-32. |
[11] | Atnaf M, Yao N, Martina K, Dagne K, Wegary D, Tesfaye K . Molecular genetic diversity and population structure of Ethiopian white lupin landraces: Implications for breeding and conservation. PLoS One, 2017,12:e0188696. |
[12] | Drummond C S, Eastwood R J, Hughes M C E. Multiple continental radiations and correlates of diversification in Lupinus(Leguminosae): testing for key innovation with incomplete taxon sampling. Syst Biol, 2012,61:443-460. |
[13] | Nevado B, Atchison G W, Hughes C E, Filatov D A . Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. Nat Commun, 2016,7:12384. |
[14] | Arenascastro S, Fernándezhaeger J, Jordanobarbudo D . A method for tree-ring analysis using Diva-Gis freeware on scanned core images. Tree-Ring Res, 2015,71:118-129. |
[15] | Doyle J J, Doyle J L . A rapid total DNA preparation procedure for fresh plant tissue. Focus, 1990,12:13-15. |
[16] | Verhoeven K J F, Jansen J J, Biere D A . Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol, 2010,185:1108-1118. |
[17] | da Maia L C, Palmieri D A, de Souza V Q, Kopp M M, de Carvalho F I F, de Oliveira A C . SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics, 2008,2008:412696. |
[18] | Liu K, Muse S V . PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21:2128-2129. |
[19] | Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S . MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011,28:2731-2739. |
[20] | Yeh F C, Boyle T J . Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot, 1997,129:157. |
[21] | Falush D, Stephens M, Pritchard J K . Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003,164:1567-1587. |
[22] | Peakall R, Smouse P E . GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics, 2012,28:2537-2539. |
[23] | Mahé F, Markova D, Pasquet R, Misset M-T, Aïnouche A . Isolation, phylogeny and evolution of the SymRK gene in the legume genus Lupinus L. Mol Phylogenetics Evol, 2011,60:49-61. |
[24] | Cristofolini G . A serological contribution to the systematics of the genus Lupinus(Fabaceae). Plant Syst Evol, 1989,166:265-278. |
[25] | Gladstones J S. Present situation and potential of Mediterranean/African lupins for crop rotation. In: Proceedings of the 3rd international lupin conference. La Rochelle, France, 1984. pp 18-37. |
[26] | Gladstones J S . Lupins of the Mediterranean region and Africa. South Perth, Australia: Tech Bull, 1974. pp 1-48. |
[27] | Gupta S, Buirchell B J, Cowling W A . Interspecific reproductive barriers and genomic similarity among the rough-seeded Lupinus species. Plant Breed, 1996,115:123-127. |
[28] | Gladstones J S. Distribution, origin, taxonomy, history and importance. In: Gladstones J S, Atkins C, Hamblin J, eds. Lupins as Crop Plants: Biology, Production and Utilization. Wallingford, United Kingdom: CAB International, 1998. pp 1-39. |
[29] | Ghrabi G Z, Puech S, Zouaghi M . Flow cytometry DNA assay of Mediterranean lupins. Candollea, 1999,54:45-56. |
[30] | Talhinas P, Sreenivasprased S, Neves-Martins J, Oliveira H . Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology, 2003,92:986-996. |
[31] | Święcickii W K, Święcicki W, Nijaki T . Lupinus × hispanicoluteus: an interspecific hybrid of Old World lupins. Acta Soc Bot Pol, 1999,68:217-220. |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[3] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[4] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[5] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[6] | 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081. |
[7] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[8] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[9] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[10] | 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323. |
[11] | 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370. |
[12] | 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133. |
[13] | 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49. |
[14] | 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051. |
[15] | 陶爱芬,游梓翊,徐建堂,林荔辉,张立武,祁建民,方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996. |
|