欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (6): 914-923.doi: 10.3724/SP.J.1006.2020.94141

• 耕作栽培·生理生化 • 上一篇    下一篇

蓖麻种子结构的解剖和显微观察

郭学民(),赵晓曼,徐珂,王芯蕊,张辰瑜,东方阳   

  1. 河北科技师范学院农学与生物科技学院, 河北昌黎 066600
  • 收稿日期:2019-09-23 接受日期:2020-01-15 出版日期:2020-06-12 网络出版日期:2020-02-17
  • 通讯作者: 郭学民
  • 基金资助:
    河北科技师范学院博士基金(2013YB021)

Anatomy and microscopic observation of Ricinus communis seed structure

GUO Xue-Min(),ZHAO Xiao-Man,XU Ke,WANG Xin-Rui,ZHANG Chen-Yu,DONG-FANG Yang   

  1. College of Agronomy and Biotechnology, Heibei Normal University of Science & Technology, Changli 066600, Hebei, China
  • Received:2019-09-23 Accepted:2020-01-15 Published:2020-06-12 Published online:2020-02-17
  • Contact: Xue-Min GUO
  • Supported by:
    Doctor Foundation of Hebei Normal University of Science & Technology(2013YB021)

摘要:

本文通过萌发法、分离法、石蜡切片法和显微观察技术, 分别以番红固绿和希夫试剂染色, 系统观察了蓖麻种皮、胚乳和胚的结构及其维管束分布。(1)蓖麻种子背侧基部的种孔并未被种阜所覆盖。(2)种皮包括外种皮、内种皮和种阜3部分, 其中, 外种皮由外至内分别为长柱状表皮层、海绵组织层和栅栏组织层, 而内种皮则依次为马氏层、海绵组织层和内珠被内层, 在种阜端由内种皮内层和外层共同围成气室, 类似于鸡蛋的气室。(3)在外种皮和内种皮中均有维管束分布, 其中外种皮的大型维管束仅分布在种子腹侧种脊的海绵组织层内, 它从种脐延伸至种阜相对一端; 而内种皮维管束也分布在海绵组织层中, 通过维管束索, 逐级分枝, 止于种阜端气室边缘; 内、外种皮的维管束通过合点端的连接点相连续, 共同构成种皮维管系统。(4)种阜由表皮和薄壁组织构成, 其中薄壁组织由外侧小型薄壁细胞和内侧大型薄壁细胞构成。种阜维管束仅2束, 分布在种阜中部腹侧, 独立构成种阜维管系统; 在种阜中, 还有种阜管道, 其内端开口于内种皮的气室, 外端为盲端。(5)胚乳由含大量糊粉粒的薄壁细胞构成, 其中未见维管束分布。在胚中, 维管束为外韧维管束, 它们分化于胚轴, 从胚轴顶端两侧分别进入2片子叶主脉, 在主脉中由4个逐步减少为1个, 在子叶中分枝变细, 构成胚维管系统; 子叶表皮和叶肉细胞中均含糊粉粒, 但在胚芽、胚轴和胚根中未见糊粉粒; 2片子叶近轴面分离, 远轴面则通过粘液层与胚乳相连接; 胚轴和胚根在空间上与胚乳分离。这些结果为全面掌握植物蓖麻种子的结构和研究种子发育和萌发过程及其物质运输提供了解剖学依据。

关键词: 蓖麻, 种子, 维管束, 解剖结构

Abstract:

We systematically observed the structure and distribution of vascular bundles of castor (Ricinus communis) testa, endosperm and embryo with germination, separation, paraffin sectioning technique, and microscopic observation techniques, stained with safranine and fast green, along with schiff’s reagent, respectively. (1) Micropyle at the dorsal base of the seed was not covered by the caruncle. (2) The testa consisted of three parts: episperm, endopleura and the caruncle, in which the episperm was composed of the long columnar epidermal layer, sponge parenchma and palisade parenchma from outside to inside, while the endopleura was composed of Malpighian layer, sponge parenchma and the inner integument layer, with an air chamber surrounded by the inner layer and outer layer of endopleura at the end of the caruncle, similar to that of eggs. (3) Both the episperm and endopleura were distributed with vascular bundles, and the large ones of the episperm only distributed in the spongy parenchma of the ventral raphe of the seed, which extended from the hilum to the opposite end of the caruncle; while those of endopleura were also distributed in the spongy parenchtma, and they branched step by step through the bundle band, ending at the edge of the air chamber at the end of the caruncle; those of both the episperm and endopleura were continuous through the junction point of the chalazal end to form the vascular system of the testa. (4) The caruncle was composed of epidermis and parenchyma, in which parenchyma consisted of small parenchyma cells on the outside and large parenchyma cells on the inside. In the middle and ventral part of the caruncle, there were only two vascular bundles, which constituted the vascular system of the caruncle independently. In the caruncle, caruncle channel was also found, with the inner end opening in the air chamber of the endopleura and the outer end being blind. (5) No vascular bundles were found in the endosperm, which consisted of parenchymal cells containing a large number of aleurone grains. In the embryo, the vascular bundles were collateral, which differentiated in the hypocotyle and entered the main vein of two cotyledons from both sides of the top of the hypocotyle respectively, gradually reduced from 4 to 1 in the main veins, and the branches became thinner in the cotyledon, forming the vascular system of embryo. The cotyledon epidermis and mesophyll cells contained aleurone grains, but no aleurone grains were found in the plumule, hypocotyle and radicle. Two cotyledons separated from each other on the adaxial surface, while their abaxial surfaces were connected with the endosperm through the mucilaginous layers. The hypocotyle and radicle were spatially separated from the endosperm. These results provide an anatomical basis for comprehensively understanding the structure of the seeds and studying the seed development and germination and their material transportation.

Key words: Ricinus communis, seed, vascular bundle, anatomical structure

图1

蓖麻种子的形态 A: 种子腹面观, 示外种皮的纹饰和种脊(箭头); B: 去外种皮的种子, 示内种皮维管束(箭头)的分布; C: 去种皮的种子, 示乳白色的胚乳; D: 与子叶平面垂直的正中纵切面, 示胚在种子中的位置; E: 游离的胚, 示子叶、胚轴和胚根; F: 去部分种皮、胚根突破种孔的萌发种子, 示种孔在种阜背侧, 并未被种阜覆盖。HI: 种脐; CA: 种阜; EN: 胚乳; TE: 种皮; EM: 胚; CO: 子叶; HY: 胚轴; RA: 胚根。Bar = 2 mm。"

图2

蓖麻种皮的解剖结构 A: 种子背侧外种皮垂直于种子长轴横切面, 示长柱状表皮层、海绵组织层和栅栏组织层; B: 外种皮表皮细胞横切面, 示表皮细胞椭圆形形态; C: 种子侧面外种皮垂直于种子长轴横切面, 示长柱状表皮层、海绵组织层和栅栏组织层; D: 种子腹侧外种皮沿种脊延伸方向的横切面, 示柱状表皮层、海绵组织层和栅栏组织层以及位于海绵组织层的大型维管束; E: 种子腹侧外种皮垂直于种脊延伸方向的横切面, 示大型维管束; F: 内种皮分布示意图, 示在种阜端内种皮内层和外层围成的气室; G: 外种皮腹侧内侧体视显微镜图像, 示种阜端外种皮和内种皮外层不易分离, 以及种脊大型维管束在种阜相对一端与内种皮维管束索的连接点(箭头); H: 内种皮脉间区横切面, 示马氏层、扁平的海绵组织层和内珠被内层; I: 内种皮沿维管束延伸方向的横切面, 示维管束位于海绵组织层中。EP: 表皮层; SP: 海绵组织层; PP: 栅栏组织层; LB: 大型维管束; IE: 内种皮内层; OE: 内种皮外层; ML: 马氏层; IL: 内珠被内层; EB: 内种皮维管束。"

图3

蓖麻内种皮维管束分布 A: 部分游离的内种皮, 示被染成红色的、代表维管束的木质部和维管束的分枝格局; B: 图A中方框a的放大图, 示与外种皮腹侧种脊大型维管束相连的维管束索, 分枝为3个较大的维管束; C: 图A中方框b的放大图, 示管胞末端侧壁相连(箭头); D: 图A中方框c的放大图, 示维管束分枝的格局; E: 图A中方框d的放大图, 示内种皮维管束末端的螺纹管胞(箭头)。BB: 维管束索。"

图4

蓖麻种子种阜的形态与结构 A~C: 体视显微镜图片, 示种阜的形态; D~J: 横切面; K和L: 纵切面; D和H~J: 希夫试剂染色, 示细胞壁由糖类物质构成; E~G、K、L: 番红和固绿双重染色, 示细胞壁不角质层和含木质素。A: 种阜背面观, 示种阜中部的浅沟将种阜上部分为2个球形突起; B: 种阜腹面观, 示种阜和外种皮相连接; C: 种阜底面观, 示种阜管道在内种皮内层和外层之间的开口(箭头), 该开口靠近种子背侧, 以及白色的内种皮外层; D: 种阜上部横切面, 示2个球形突起; E: 种阜浅沟基部横切, 示未出现种阜管道; F: 种阜中部外侧横切面, 示外侧3层小型的细胞和内部大型的细胞; G: 种阜中部横切放大图, 示发达的纹孔(箭头); H: 种阜中部横切面, 示出现种阜管道; I: 图H中方框a放大图, 示Y字形种阜管道; J: 图H中方框b放大图, 示种阜中的维管束(箭头); K: 距种阜管道中轴一点距离的种阜纵切面, 示种阜管道(箭头)上端并未和浅沟基部联通; L: 沿种阜管道中轴的纵切面, 示种阜管道基部的开口(箭头)。EM: 外种皮; CC: 种阜管道。"

图5

希夫试剂染色的蓖麻胚的解剖结构 A: 子叶中部横切面, 示2片子叶被胚乳包围的格局; B: 图A的局部放大图, 示胚乳细胞中大量含有拟晶体和磷酸盐球形体的糊粉粒; C: 图A中胚乳边缘的局部放大图, 示外侧9~11层小型胚乳细胞和内侧大型的胚乳细胞, 且均含有糊粉粒; D: 图(A)中子叶中段横切面, 示含有糊粉粒的小型的子叶细胞、大型的胚乳细胞以及子叶和胚乳之间的粘液层(箭头); E: 胚根横切面, 示基本分生组织和原形成层; F: 图E的局部放大图, 示基本分生组织和原形成层细胞缺少糊粉粒; G: 胚轴横切面, 示皮层、原形成层和维管柱; H: 图G的局部放大图, 示皮层、原形成层和维管柱细胞缺少糊粉粒; I: 胚芽横切面, 示2个胚芽突起被包围在2片子叶主脉之间; J: 图I的局部放大图, 示胚芽细胞缺少糊粉粒; K: 距图I所在平面上面一点距离的子叶基部横切面, 示2片子叶主脉结构; L: 图K的局部放大图, 示主脉细胞缺少糊粉粒。图中圆圈代表外韧维管束。GM: 基本分生组织; PR: 原形成层; CX: 皮层; PL: 胚芽; VC: 维管柱。"

图6

番红固绿双重染色的蓖麻胚的解剖结构 A和B: 种子中部的横切面; C~F: 垂直于子叶所在平面的纵切面。A: 子叶中段横切, 示2片子叶分离、子叶与胚乳通过粘液层(箭头)相互连接的格局, 以及大型胚乳细胞和小型子叶细胞均含糊粉粒; B: 胚乳横切面, 示含大量糊粉粒的胚乳细胞; C: 去大部分子叶的胚的纵切面, 示部分子叶、胚芽、胚轴和胚根; D: 图C中胚根纵切面, 示原表皮、基本分生组织和原形成层的分化格局; E: 图C中胚轴的纵切面, 示表皮、皮层和维管柱的分化格局; F: 胚芽和部分子叶的纵切面, 示胚芽和联系胚轴与子叶的维管束(箭头)。"

图7

蓖麻种子维管束分布示意图 A: 与子叶面垂直的正中纵切面, 示内、外种皮维管束的关系及来源于胚轴的子叶主脉维管束; B: 与子叶面平行的正中纵切面, 示内种皮维管束和子叶维管束空间上的分离; C: 与种子长轴垂直的正中横切面, 示外种皮、内种皮和子叶维管束的空间关系; D: 种阜中部局部横切面, 示种阜维管束。VC: 子叶主脉维管束; HB: 胚轴维管束; AC: 气室; BV: 子叶分枝维管束; BC: 种阜维管束。"

[1] Kadri A, Gharsallah N, Damak M, Gdoura R . Chemical composition and in vitro antioxidant properties of essential oil of Ricinus communis L. J Med Plants Res, 2011,5:1466-1470.
[2] Zarai Z, Ben Chobba I, Ben Mansour R, Békir A, Gharsallah N, Kadri A . Essential oil of the leaves of Ricinus communis L.: In vitro cytotoxicity and antimicrobial properties. Lipids Health Disease, 2012,11:102.
[3] Severino L S, Auld D L, Baldanzi M, Cândido M J D, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavanya C, Machado O L T, Mielke T, Milani M, Miller T D, Morris J B, Morse S A, Navas A A, Soares D J, Sofiatti V, Wang M L, Zanotto M D, Zieler H . A review on the challenges for increased production of castor. Agron J, 2012,104:853-880.
[4] Pius C O, Nnaemeka S P O, Charles O, Vincent N O, Chinenye A I, . Design enhancement evaluation of a castor seed shelling machine. J Sci Res Rep, 2014,3:924-938.
[5] Rahmati H, Salehi S, Malekpour A, Farhangi F . Antimicrobial activity of castor oil plant ( Ricinus communis) seeds extract against gram positive bacteria, gram negative bacteria and yeast. Int J Mol Med Adv Sci, 2015,11:9-12.
[6] Scarpa A, Guerci A . Various uses of the castor oil plant ( Ricinus communis L.): a review. J Ethnopharmacol, 1982,5:117-137.
[7] Wafa G, Amadou D, Larbi K M, Héla E F O . Larvicidal activity, phytochemical composition, and antioxidant properties of different parts of five populations of Ricinus communis L. Ind Crop Prod, 2014,56:43-51.
[8] Kaushik N K, Bagavan A, Rahuman A A, Zahir A A, Kamaraj C, Elango G, Jayaseelan C, Kirthi A V, Santhoshkumar T, Marimuthu S, Rajakumar G, Tiwari S K, Saha D . Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malaria J, 2015, doi 10.1186/s12936-015-0564-z.
[9] 曾佑炜, 宋光泉, 彭永宏, 梁关生 . 蓖麻毒蛋白研究及应用进展(综述). 亚热带植物科学, 2004, ( 1):60-63.
Zeng Y W, Song G Q, Peng Y H, Liang G S . A review of application and research progress in ricin. Subtrop Plant Sci, 2004, ( 1):60-63 (in Chinese with English abstract).
[10] 熊冬梅, 苏小军, 熊兴耀 . 蓖麻毒蛋白的提取及应用研究. 化学与生物工程, 2013,30(12):59-62.
Xiong D M, Su X J, Xiong X Y . Extraction and application research of ricin. Chem Bioengineer, 2013,30(12):59-62 (in Chinese with English abstract).
[11] 聶伟, 殷切, 刘小华 . 蓖麻毒蛋白作用的研究进展. 中国畜牧兽医文摘, 2016,32(10):80.
Nie W, Yin Q, Liu X H . Research progress on ricin. China Anim Husbandry Veterinary Med, 2016,32(10):80 (in Chinese).
[12] 张艳欣, 梁塔娜, 李丽丽, 杨丽凤, 常如慧, 姜桐桐, 孟祥越, 黄凤兰 . 蓖麻种子应用的研究进展. 贵州农业科学, 2018,46(5):12-15.
Zhang Y X, Liang T N, Li L L, Yang L F, Chang R H, Jiang T T, Meng X Y, Huang F L . Research progress in application of Ricinus communis seeds. Guizhou Agric Sci, 2018,46(5):12-15 (in Chinese with English abstract).
[13] Bianchini M, Pacini E . The caruncle of Ricinus communis L.( castor bean): its development and role in seed dehydration, rehydration, and germination. Int J Plant Sci, 1996,157:40-48.
[14] Lisci M, Bianchini M, Pacini E . Structure and function of the elaiosome in some angiosperm species. Flora, 1996,191:131-141.
[15] Kriedemann P, Beevers H . Sugar uptake and translocation in the castor bean seedling: I. Characteristics of transfer in intact and excised Seedlings. Plant Physiol, 1967,42:161-173.
[16] Vigil E L . Cytochemical and developmental changes in microbodies (glyoxysomes) and related organelles of castor bean endosperm. J Cell Biol, 1970,46:435-454.
[17] Fabbri F, Palandri M . Ultrastructural modifications in contyledonous leaves of Ricinus comminis L. during aging. Caryologia, 1970,23:677-714.
[18] 陆时万, 徐祥生, 沈敏健 . 植物学 (第2版上册). 北京: 高等教育出版社, 1992. pp 35, 70.
Lu S W, Xu X S, Shen M J. Botany, 2nd edn. Part I. Beijing: Higher Education Press, 1992. pp 35, 70 (in Chinese).
[19] 马炜梁 . 植物学. 北京: 高等教育出版社, 2012. pp 24, 101.
Ma W L. Botany. Beijing: Higher Education Press, 2012. pp 24, 101 (in Chinese).
[20] 郭学民, 徐兴友, 孟宪东, 左照江, 高荣孚 . 合欢种子硬实与萌发特性及种皮微形态与结构特征的研究. 内蒙古农业大学学报(自然科学版), 2006,27(3):13-18.
Guo X M, Xu X Y, Meng X D, Zuo Z J, Gao R F . Bourgeon characteristics of hardseed of Albizia julibrissin Durazz. and its testa micro-morphology and structure. J Inner Mongolia Agric Univ( Nat Sci Edn), 2006,27(3):13-18 (in Chinese with English abstract).
[21] Sernander R . Entwurf einer Monographie der europäischen Myrmekochoren. Uppsala: Almqvist & Wiksells, 1906 (in German).
[22] Bhojwani S S, Bhantnagar S P. The Embryology of Angiosperms3rd edn. Delhi: Vikas Publishing House PVT Ltd, 1979. p 151.
[23] 王凯基, 倪德祥 . 植物生物学词典. 上海: 上海科技教育出版社, 1998. p 378.
Wang K J, Ni D X. Dictionary of Plant Biology. Shanghai: Shanghai Science and Technology Education Press, 1998. p 378 (in Chinese).
[24] Pacini E . Mercurialis annua L. (Euphorbiaceae) seed interacyions with the ant Messor strutor (Latr.). Hymenoptera: Formicidae. Acta Bot Neerl, 1990,39:253-262.
[25] Kriedemann P, Beevers H . Sugar uptake and translocation in the castor bean seedling: II. Sugar transformations during uptake. Plant Physiol, 1967,42:174-180.
[26] Komor E . Sucrose uptake by cotyledons of Ricinus communis L.: characteristics, mechanism, and regulation. Planta, 1977,137:119-131.
doi: 10.1007/BF00387548
[1] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[2] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[3] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[4] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[5] 程艳双, 胡美艳, 杜志敏, 闫秉春, 李丽, 王祎玮, 鞠晓堂, 孙丽丽, 徐海. 减氮对辽粳5号/秋田小町RIL群体茎秆维管束、穗部和产量
性状的影响及其相互关系
[J]. 作物学报, 2021, 47(5): 964-973.
[6] 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 任桢, 刘昱茜, 顾立峰, 卢海潼, Irshad Ahmad, 焦秀荣, 孟天瑶, 周桂生. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应[J]. 作物学报, 2021, 47(4): 728-737.
[7] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[8] 邱红梅, 陈亮, 侯云龙, 王新风, 陈健, 马晓萍, 崔正果, 张玲, 胡金海, 王跃强, 邱丽娟. 大豆种子颜色遗传调控机制研究进展[J]. 作物学报, 2021, 47(12): 2299-2313.
[9] 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890.
[10] 鲁庚,唐鑫,陆俊杏,李丹,胡秋芸,胡田,张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283-1290.
[11] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[12] 张双双,王立伟,姚楠,郭光艳,夏玉凤,秘彩莉. 水稻OsUBA基因的表达及其在促进种子萌发和开花中的功能[J]. 作物学报, 2019, 45(9): 1327-1337.
[13] 宋松泉,刘军,徐恒恒,张琪,黄荟,伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981.
[14] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
[15] 申状状,李昱樱,荣二花,吴玉香. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!