欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (4): 728-737.doi: 10.3724/SP.J.1006.2021.04146

• 耕作栽培·生理生化 • 上一篇    下一篇

苗期重金属胁迫下蓖麻生长、生理和重金属积累效应

吕冬梅1,2(), 朱广龙1(), 王玥1, 施雨1, 卢发光1, 任桢1, 刘昱茜1, 顾立峰1, 卢海潼1, Irshad Ahmad1, 焦秀荣1, 孟天瑶1, 周桂生1,*()   

  1. 1扬州大学教育部农业与农产品安全国际合作联合实验室 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
    2加拿大麦吉尔大学植物科学系, 加拿大蒙特利尔H9X3V9
  • 收稿日期:2020-07-03 接受日期:2020-10-14 出版日期:2021-04-12 网络出版日期:2020-11-18
  • 通讯作者: 周桂生
  • 作者简介:吕冬梅, E-mail: dongmei. lyu@mail.mcgill.ca;|朱广龙, E-mail: zhuguang2007@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFE0108100);国家重点研发计划项目(2018YFD0800201);扬州大学科技创新培育基金(2019CXJ198);江苏省林业科技创新与推广项目(LYKJ[2019]47);扬州市绿扬金凤人才计划(2018)

Growth, physiological, and heavy metal accumulation traits at seedling stage under heavy metal stress in castor (Ricinus communis L.)

LYU Dong-Mei1,2(), ZHU Guang-Long1(), WANG Yue1, SHI Yu1, LU Fa-Guang1, REN Zhen1, LIU Yu-Qian1, GU Li-Feng1, LU Hai-Tong1, Irshad Ahmad1, JIAO Xiu-Rong1, MENG Tian-Yao1, ZHOU Gui-Sheng1,*()   

  1. 1Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University / Co-Innovation Center for Modern Production Technology in Grain Crops of Jiangsu Province, Yangzhou 225009, Jiangsu, China
    2Plant Science Department, MacDonald Campus, McGill University, Montreal H9X3V9, Canada
  • Received:2020-07-03 Accepted:2020-10-14 Published:2021-04-12 Published online:2020-11-18
  • Contact: ZHOU Gui-Sheng
  • Supported by:
    National Key Research and Development Program of China(2018YFE0108100);National Key Research and Development Program of China(2018YFD0800201);Science and Technology Innovation Cultivating Fund of Yangzhou University(2019CXJ198);Innovation and Promotion of Forestry Science and Technology Program of Jiangsu Province(LYKJ[2019]47);Talent Project of ‘LyuYangJinFeng’ of Yangzhou Government(2018)

摘要:

农业面源和重金属污染日益加剧, 严重威胁农业生态环境与人类健康。探究作物对重金属的累积效应及生理机制对重金属污染的治理意义重大。本文以淄蓖5号为材料, 研究重金属处理下(Cu、Zn、Cd, 处理浓度分别为0、30、60、120 mg L-1)蓖麻幼苗对各重金属的积累效应及相关生理机制, 为重金属污染土壤的修复与防治奠定基础。重金属处理显著影响蓖麻植株的生长、生理及对重金属的积累。随着重金属浓度的增加, 株高先增后降, 在60 mg L-1时达最大值; 根长、鲜重、干重显著降低。叶片中SOD活性先降后增, 在10 DAS (播种后天数) 120 mg L-1 Cu和Zn处理下活性最高, 分别增加了45.5%和31.8%; POD活性在10 DAS先降后增, 而在25 DAS和45 DAS显著增加, 且POD活性随生长进程的推进增加显著。可溶性蛋白含量仅在120 mg L-1Cu处理下显著增加, 分别增加了18.8%、66.7%和83.3%。MDA含量随着处理浓度的增加显著增加, 随生育进程的推进而显著降低, 且Cd处理下的MDA含量显著高于Cu和Zn处理。蓖麻植株对Cu、Zn、Cd的积累量随处理浓度的增加而递增, 在120 mg L-1浓度下积累量最大, 其中对Zn的积累量最高, Cd次之, 各器官对重金属的积累量表现为根>茎>叶。表明蓖麻对重金属具有一定的耐受性, 蓖麻植株主要通过提高抗氧化酶活性缓解重金属胁迫; 蓖麻对不同重金属的积累具有器官特异性; 种植蓖麻可作为修复Cu、Zn、Cd等重金属污染土壤的有效途径之一。

关键词: 蓖麻, 重金属胁迫, 生长特性, 重金属积累, 生理机制

Abstract:

Agricultural ecology environment and human health are seriously threated by aggravating agricultural non-point source and heavy metals pollution. It is of great significance to explore the cumulative effect of crops on heavy metal pollution and its physiological mechanism. A castor (Ricinus communis L.) variety Zibi 5 was used to study the accumulation effect of heavy metals and associated physiological mechanism under heavy metals treatments (Cu, Zn and Cd at 0, 30, 60, and 120 mg L-1 concentrations). The results showed that seedling growth, physiological traits and heavy metals accumulation significantly affected by heavy metal treatments. Plant height was increased to the maximum with 60 mg L-1 and then decreased. However, root length, fresh weight and dry weight were all decreased under heavy metal treatments. In general, SOD activity was decreased at low treatment concentration but increased at high treatment concentration, the highest activity was showed at 120 mg L-1 under Cu and Zn treatments at 10 DAS (days after sowing), which were 45.5% and 31.8% higher than that under CK, respectively. POD activity was first decreased and then increased on 10 DAS, but significantly increased in both 25 DAS and 45 DAS, as well as prominently increased with prolonged the growth periods. Soluble protein was only significantly increased under 120 mg L-1 Cu treatment, and increased by 18.8%, 66.7%, and 83.3% at each growth stage, respectively. MDA content was significantly increased with the increase of treatment concentration and significantly decreased with prolonged the growth periods, and MDA content was significant higher under Cd treatment than that under Cu and Zn treatments. The accumulation contents of Cu, Zn, and Cd in castor plant were gradually increased with the increase of treatment concentration, and the maximum accumulation was at 120 mg L-1 concentration. Among of them, the accumulation of treatment concentration increased, and the maximum accumulation showed at 120 mg L-1 concentration. Among them, the accumulation of Zn was the highest, followed by Cd. The accumulation content of heavy metals in each organ was shown as root > stem > leaf. This study suggested that castor has a certain tolerance to heavy metals, which was increased the antioxidase activity to alleviate heavy metals stress. The castor has organ specificity in heavy metals accumulation. It is an effective approach to plant castor to repair soil pollution by heavy metals such as Cu, Zn, and Cd.

Key words: castor, heavy metal stress, growth trait, heavy metal accumulation, physiological mechanism

图1

重金属处理下蓖麻幼苗株高的变化 10 DAS: 播种后第10天; 25 DAS: 播种后第25天。柱上同一时期不同大、小写字母表示处理间在0.05水平上差异显著。"

图2

重金属处理下蓖麻幼苗的根长变化 10 DAS: 播种后第10天; 25 DAS: 播种后第25天。柱上同一时期不同大、小写字母表示处理间在0.05水平上差异显著。"

表1

重金属处理下蓖麻幼苗植株的鲜重和干重变化"

处理
Treatment
浓度
Concentration
(mg L-1)
10 DAS 25 DAS
鲜重
Fresh weight
(g plant-1)
干重
Dry weight
(g plant-1)
鲜重
Fresh weight
(g plant-1)
干重
Dry weight
(g plant-1)
Cu 0 2.14 a 0.30 a 3.11 c 0.61 c
30 1.87 b 0.21 d 3.33 b 0.71 b
60 1.35 d 0.26 b 3.00 d 0.55 d
120 1.69 c 0.24 c 3.75 a 0.81 a
Zn 0 2.14 a 0.30 a 3.11 b 0.61 a
30 1.61 c 0.26 b 2.79 c 0.42 cd
60 2.03 b 0.29 a 3.28 a 0.55 b
120 1.29 d 0.20 c 3.08 bc 0.47 c
Cd 0 2.14 a 0.30 a 3.11 a 0.61 a
30 1.88 b 0.22 c 1.86 d 0.54 b
60 1.04 d 0.14 d 2.15 c 0.56 b
120 1.72 c 0.26 b 2.45 b 0.57 b

图3

重金属处理下蓖麻植株中铜、锌、镉的积累量 10 DAS: 播种后第10天; 25 DAS: 播种后第25天。柱上同一时期不同小写字母表示在0.05水平上差异显著。"

图4

重金属胁迫下蓖麻根、茎、叶积累的重金属含量变化 柱上同一时期不同小写字母表示在0.05水平上差异显著。"

图5

重金属处理下不同时期蓖麻植株叶片的SOD活性变化 柱上同一时期不同小写字母表示在0.05水平上差异显著。DAS: 播种后天数。"

表2

重金属处理下不同时期蓖麻植株叶片的POD活性的变化"

处理
Treatment
浓度
Concentration (mg L-1)
POD (U g-1 FW)
10 DAS 25 DAS 45 DAS
Cu 0 51.5 b 50.8 c 89.2 d
30 39.7 d 64.1 b 125.5 c
60 49.8 c 74.3 ab 166.0 b
120 57.5 a 79.5 a 275.0 a
Zn 0 46.8 c 49.8 d 156.3 d
30 32.0 d 70.7 c 175.9 c
60 60.9 b 79.8 b 269.2 b
120 75.3 a 92.5 a 419.0 a
Cd 0 47.5 b 53.2 d 135.1 d
30 26.4 d 59.4 c 246.1 c
60 37.8 c 82.0 a 327.4 a
120 66.6 a 80.2 b 260.2 b

图6

重金属处理下不同时期蓖麻植株叶片的可溶性蛋白 柱上同一时期不同小写字母表示在0.05水平上差异显著。DAS: 播种后天数。"

表3

不同重金属处理下各时期蓖麻叶片的丙二醛含量"

处理
Treatment
浓度
Concentration (mg L-1)
MDA (μmol g-1 FW)
10 DAS 25 DAS 45 DAS
Cu 0 38.5 d 26.2 d 21.2 d
30 75.3 c 43.6 c 33.3 c
60 96.4 b 69.7 b 49.5 b
120 109.5 a 88.5 a 66.8 a
Zn 0 25.2 d 20.6 d 15.3 d
30 56.4 c 35.4 c 19.8 c
60 78.6 b 57.3 b 32.7 b
120 98.2 a 76.1 a 46.8 a
Cd 0 27.4 d 22.4 d 18.3 d
30 83.3 c 41.8 c 27.3 c
60 126.4 b 88.6 b 42.7 b
120 174.1 a 117.2 a 73.6 a
[1] 樊霆, 叶文玲, 陈海燕, 鲁洪娟, 张颖慧, 李定心, 唐子阳, 马友华. 农田土壤重金属污染状况及修复技术研究. 生态环境学报, 2013,22:1727-1736.
Fan T, Ye W L, Chen H Y, Lu H J, Zhang Y H, Li D X, Tang Z Y, Ma Y H. Study on heavy metal pollution and rehabilitation techniques in farmland soil. J Ecol Environ, 2013,22:1727-1736 (in Chinese with English abstract).
[2] Smith V H, Schindler D W. Eutrophication science: where do we go from here? Trends Ecol Evol, 2009,24:201-207.
doi: 10.1016/j.tree.2008.11.009 pmid: 19246117
[3] 马敏, 龚惠红, 邓泓. 重金属对8种园林植物种子萌发及幼苗生长的影响. 中国农学通报, 2012,28(22):206-211.
Ma M, Gong H H, Deng H. Effects of heavy metals on seed germination and seedling growth of 8 garden plants. Chin Agric Sci Bull, 2012,28(22):206-211 (in Chinese with English abstract).
[4] 王利宝, 朱宁华, 鄂建华. Pb、Zn等重金属对樟树、栾树幼苗生长的影响. 中南林业科技大学学报, 2010,30(2):44-47.
Wang L B, Zhu N H, E J H. Effects of Pb, Zn and other heavy metals on the growth of camphor and Luan seedlings. J Central South Univ For Technol, 2010,30(2):44-47 (in Chinese with English abstract).
[5] 邱丽俊, 刘爱忠. 我国优势油脂类生物柴油植物蓖麻的种质资源发掘和生物柴油利用. 生命科学, 2014,26:503-508.
Qiu L J, Liu A Z. Germplasm resources exploitation and biodiesel utilization of Ricinus communis, a dominant oil biodiesel plant in China. Chin Bull Life Sci, 2014,26:503-508 (in Chinese with English abstract).
[6] Scholz V, Silva J N D. Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy, 2008,32:95-100.
[7] Huang G, Guo G, Yao S, Zhang N, Hu H. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor ( Ricinus communis L.) under Cu stress. Int J Phytoremed, 2016,18:33-40.
[8] Niu Z X, Sun L N, Sun T H. Response of root and aerial biomass to phytoextraction of Cd and Pb by sunflower, castor bean, alfalfa and mustard. Adv Environ Biol, 2009,3:255.
[9] Kabir M, Iqbal M Z, Shafiq M, Farooqi Z R. Effects of lead on seedling growth of Thespesia populnea L. Plant Soil Environ, 2010,56:194-199.
[10] 易心钰, 蒋丽娟, 易诗明, 陈景震, 刘强. 铅锌矿渣对蓖麻生长、重金属累积及其对矿质元素吸收的影响. 中南林业科技大学学报, 2017,37(3):116-122.
Yi X Y, Jiang L J, Yi S M, Chen J Z, Liu Q. Effects of lead-zinc slag on growth, accumulation of heavy metals and absorption of mineral elements of castor bean. J Central South Univ For Technol, 2017,37(3):116-122 (in Chinese with English abstract).
[11] 陆晓怡, 何池全. 蓖麻对重金属Cd的耐性与吸收积累研究. 农业环境科学学报, 2005,24:674-677.
Lu X Y, He C Q. Studies on the tolerance, uptake and accumulation of heavy metal Cd by castor bean. J Agric Environ Sci, 2005,24:674-677 (in Chinese with English abstract).
[12] Lu X Y, He C Q. Tolerance, uptake and accumulation of cadmium by Ricinus communis L. J Agro-Environ Sci, 2005,24:674-677.
[13] Begonia G B, Davis C D, Begonia M F T, Gray C N. Growth responses of Indian mustard [Brassica juncea,(L.) Czern.] and its phytoextraction of lead from a contaminated soil. Bull Environ Contam Toxicol, 1998,61:38-43.
[14] 邹京南, 于奇, 金喜军, 王明瑶, 秦彬, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响. 作物学报, 2020,46:745-758.
Zou J N, Yu Q, Jin X J, Wang M Y, Qin B, Ren C Y, Wang M X, Zhang Y X. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress. Acta Agron Sin, 2020,46:745-758 (in Chinese with English abstract).
[15] 朱广龙, 宋成钰, 于林林, 陈许兵, 智文芳, 刘家玮, 焦秀荣, 周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制. 作物学报, 2018,44:1713-1724.
Zhu G L, Song C Y, Yu L L, Chen X B, Zhi W F, Liu J W, Jiao X R, Zhou G S. Alleviation effects of exogenous growth regulators on seed germination of sweet sorghum under salt stress and its physiological basis. Acta Agron Sin, 2018,44:1713-1724 (in Chinese with English abstract).
[16] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020,46:1760-1770.
Zhang H Y, Wang B Q, Feng X Y, Li G L, Xie B T, Dong S X, Duan W X, Zhang L M. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas(L.) Lam.]. Acta Agron Sin, 2020,46:1760-1770 (in Chinese with English abstract).
[17] 毛雪飞, 杨洁. 锌镉胁迫下 4 种农田杂草生理生化特性及对重金属的累积特征. 西南林业大学学报(自然科学), 2019,39(6):9-18.
Mao X F, Yang J. Physiological and biochemical characteristics of 4 farmland weeds under Zn and Cd stress and accumulation characteristics of heavy metals. J Southwest For Univ (Nat Sci)), 2019,39(6):9-18 (in Chinese with English abstract).
[18] 夏雪姣. 镉、铅胁迫对小麦形态发育和生理代谢的影响及富集特性研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2018.
Xia X J. Effects of Cadmium, Lead Stress on Morphological Development and Physiological Metabolism and Research on Their Accumulation in Wheat. MS Thesis of Northwest A & F University, Yangling, Shaanxi, China, 2018 (in Chinese with English abstract).
[19] Hossain M A, Piyatida P, Da Silva J A T, Fujita M. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot, 2012,2012:872-875.
[20] 宋清梅, 蔡信德, 吴颖欣, 吴嘉慧, 陈显斌, 吴文成. 香根草对污染土壤水溶态重金属组分胁迫响应研究. 农业环境科学学报, 2019,38:2715-2722.
Song Q M, Cai X D, Wu Y X, Wu J H, Chen X B, Wu W C. Response of Vetiveria zizanioides to the stress of water-soluble components of heavy metals in contaminated soil. J Agro-Environ Sci, 2019,38:2715-2722 (in Chinese with English abstract).
[21] 姚俊修, 乔艳辉, 杨庆山, 仲伟国, 李庆华, 董玉峰, 李善文, 吴德军. 重金属镉胁迫对黑杨派无性系光合生理及生长的影响. 西北林学院学报, 2020,35(2):40-46.
Yao J X, Qiao Y H, Yang Q S, Zhong W G, Li Q H, Dong Y F, Li S W, Wu D J. Effects of cadmium stress on the growth and photosynthesis of aigeiros clones. J North For Univ, 2020,35(2):40-46 (in Chinese with English abstract).
[22] 明华, 曹莹, 胡春胜, 张玉铭, 程一松. 铅胁迫对玉米光合特性及产量的影响. 玉米科学, 2008,16(1):74-78.
Ming H, Cao Y, Hu C S, Zhang Y M, Cheng Y S. Effect of lead stress on the photosynthetic characteristics and yield of maize. J Maize Sci, 2008,16(1):74-78 (in Chinese with English abstract).
[23] Aibibu N, Liu Y G, Zeng G M, Wang X, Chen B B, Song H X, Xu L. Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol, 2010,101 : 6297-6303.
pmid: 20403690
[24] 宋洁, 郭华春, 李俊, 张光海, 思玲超. 铅胁迫对马铃薯幼苗生长形态及内源激素的影响. 西北农业学报, 2019,28:1830-1835.
Song J, Guo H C, Li J, Zhang G H, Si L C. Effect of lead stress on growth morphology and endogenous hormone of potato seedlings. Acta Agric Boreali-Occident Sin, 2019,28:1830-1835 (in Chinese with English abstract).
[25] 汤文光, 肖小平, 张海林, 黄桂林, 唐海明, 李超, 刘胜利, 汪柯. 轮耕对双季稻田耕层土壤养分库容及Cd含量的影响. 作物学报, 2018,44:105-114.
Tang W G, Xiao X P, Zhang H L, Huang G L, Tang H M, Li C, Liu S L, Wang K. Effects of rotational tillage on nutrient storage capacity and Cd content in tilth soil of double-cropping rice region. Acta Agron Sin, 2018,44:105-114 (in Chinese with English abstract).
[26] Islam K R. Response of rice seedlings to copper toxicity and acidity. J Plant Nutr, 2006,29:943-957.
[27] Nyitrai P, Bóka K, Gáspár L, Sárvári É, Lenti K, Keresztes Á. Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings. J Plant Physiol, 2003,160:1175-1183.
[28] Gong J, Zhao A, Zhang L, Zhang X. A comparative study on anti-oxidative ability of several desert plants under drought stress. Acta Bot Boreali-Occident Sin, 2004,24:1570-1577.
[29] Cervilla L M, Blasco B, Ríos J J, Romero L, Ruiz J M. Oxidative stress and antioxidants in tomato ( Solanum lycopersicum) plants subjected to boron toxicity. Anal Bot, 2007,100:747-756.
[30] 赵会君, 梁昕昕, 魏玉清. 不同浓度的Cu、Mn、Zn胁迫对商陆叶片光合系统参数及抗氧化酶系统的影响. 北方园艺, 2020, (3):120-127.
Zhao H J, Liang X X, Wei Y Q. Effect of different concentrations of Cu, Zn, and Mn on the photosynthetic and antioxidative system of phytolaccca americana. Northern Hortic, 2020, (3):120-127 (in Chinese with English abstract).
[31] 莫争, 王春霞, 陈琴, 王海, 薛传金, 王子健. 重金属Cu, Pb, Zn, Cr, Cd在水稻植株中的富集和分布. 环境化学, 2002,21(2):110-116.
Mo Z, Wang C X, Chen Q, Wang H, Xue C J, Wang Z J. Enrichment and distribution of heavy metals Cu, Pb, Zn, Cr, Cd in rice plants. Environ Chem, 2002,21(2):110-116 (in Chinese with English abstract).
[32] 施亚星, 吴绍华, 周生路, 王春辉, 陈浩. 土壤-作物系统中重金属元素吸收、迁移和积累过程模拟. 环境科学, 2016,37:3996-4003.
Shi Y X, Wu S H, Zhou S L, Wang C H, Chen H. Simulation of the absorption, migration and accumulation process of heavy metal elements in soil-crop system. Environ Sci, 2016,37:3996-4003 (in Chinese with English abstract).
[33] 李淑芹, 田仲鹤, 金宏鑫, 于淼, 徐景钢. 施用城市污泥堆肥对土壤和大豆器官重金属积累的影响. 农业环境科学学报, 2014,33:352-357.
Li S Q, Tian Z H, Jin H X, Yu M, Xu J G. Effects of municipal sludge composting on heavy metal accumulation in soil and soybean organs. J Agric Environ Sci, 2014,33:352-357 (in Chinese with English abstract).
[34] 林小兵, 周利军, 王惠明, 刘晖, 武琳, 俞莹, 胡敏, 何波, 周青辉, 黄欠如. 不同水稻品种对重金属的积累特性. 环境科学, 2018,11:5198-5206.
Lin X B, Zhou L J, Wang H M, Liu H, Wu L, Yu Y, Hu M, He B, Zhou Q H, Huang Q R. Accumulation characteristics of heavy metals in different rice varieties. Environ Sci, 2018,11:5198-5206 (in Chinese with English abstract).
[1] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[2] 郭学民,赵晓曼,徐珂,王芯蕊,张辰瑜,东方阳. 蓖麻种子结构的解剖和显微观察[J]. 作物学报, 2020, 46(6): 914-923.
[3] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
[4] 刘臣,陆建农,殷学贵,毕川,文淡悠,郑军,刘帅,石卓兴,成粤湘. 基于QTL定位的蓖麻株高性状遗传解析[J]. 作物学报, 2014, 40(04): 751-759.
[5] 刘立军,王康君,葛立立,范苗苗,张自常,王志琴,杨建昌. 旱种水稻基部节间性状与倒伏的关系及其生理机制[J]. 作物学报, 2012, 38(05): 848-856.
[6] 赵龙飞,李潮海,刘天学,王秀萍,僧珊珊,潘旭. 玉米花期高温响应的基因型差异及其生理机制[J]. 作物学报, 2012, 38(05): 857-864.
[7] 段骅, 俞正华, 徐云姬, 王志琴, 刘立军, 杨建昌. 灌溉方式对减轻水稻高温危害的作用[J]. 作物学报, 2012, 38(01): 107-120.
[8] 刘立军,杨立年,孙小淋,王志琴,杨建昌. 水稻实地氮肥管理的氮肥利用效率及其生理原因[J]. 作物学报, 2009, 35(9): 1672-1680.
[9] 曹云英,段骅,杨立年,王志琴,刘立军,杨建昌. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J]. 作物学报, 2009, 35(3): 512-521.
[10] 曹云英;段骅;杨立年;王志琴;周少川;杨建昌. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J]. 作物学报, 2008, 34(12): 2134-2142.
[11] 魏海燕;张洪程;戴其根;霍中洋;许轲;杭杰;马群;张胜飞;张庆;刘艳阳. 不同水稻氮利用效率基因型的物质生产与积累特性[J]. 作物学报, 2007, 33(11): 1802-1809.
[12] 郭程瑾;李宾兴;王斌;李雁鸣;肖凯. 不同磷效率小麦品种的光合特性及其生理机制[J]. 作物学报, 2006, 32(08): 1209-1217.
[13] 郭程瑾; 李宾兴;王斌;李雁鸣;肖凯. 小麦高效吸收和利用磷素的生理机制[J]. 作物学报, 2006, 32(06): 827-832.
[14] 张永丽;肖凯;李雁鸣. 种植密度对杂种小麦C6-38/Py85-1旗叶光合特性和产量的调控效应及其生理机制.[J]. 作物学报, 2005, 31(04): 498-505.
[15] 刘峰;张军;丁秀英;张文吉. 不同含钙化合物的土壤处理对水稻旱育秧苗素质、生理特性及超微结构的影响[J]. 作物学报, 2003, 29(01): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!