欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 857-864.doi: 10.3724/SP.J.1006.2012.00857

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米花期高温响应的基因型差异及其生理机制

赵龙飞,李潮海*,刘天学,王秀萍,僧珊珊,潘旭   

  1. 河南农业大学农学院 / 农业部玉米区域技术创新中心, 河南郑州450002
  • 收稿日期:2011-09-26 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 李潮海, E-mail: lichaohai2005@yahoo.com.cn, Tel: 0371-63555629
  • 基金资助:

    本研究由国家现代玉米产业技术体系项目(NYCYTX-02),河南省重大公益性项目(091100910100)和国家公益性行业(气象)科研专项(GYHY201006041)资助。

Genotypic Responses and Physiological Mechanisms of Maize (Zea mays L.) to High Temperature Stress during Flowering

ZHAO Long-Fei,LI Chao-Hai*,LIU Tian-Xue,WANG Xiu-Ping,SENG Shan-Shan,PAN Xu   

  1. Agronomy College, Henan Agricultural University, Zhengzhou 45002, China
  • Received:2011-09-26 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 李潮海, E-mail: lichaohai2005@yahoo.com.cn, Tel: 0371-63555629

摘要: 倒伏是制约旱种水稻大面积推广的主要因素之一。以籼型杂交稻汕优63和粳稻9516为材料,研究了旱种水稻倒伏的原因及其机理。结果表明,与水种相比,旱种水稻的倒伏率明显高,结实率和粒重明显降低,产量明显降低。自抽穗至成熟,旱种水稻基部节间强度(厚度、单位长度重量)、碳水化合物(尤其是淀粉)含量低于常规水种稻,α-淀粉酶活性明显高于水种稻。水稻基部节间淀粉含量与节间厚度和单位长度重量呈极显著正相关,与α-淀粉酶活性呈显著或极显著负相关。淀粉输出与α-淀粉酶活性呈显著或极显著正相关。施用硅、钾肥能降低旱种水稻基部节间α-淀粉酶活性,提高基部节间淀粉含量,增强基部节间强度,大幅度降低倒伏率,提高旱种水稻的结实率和粒重,从而提高产量。孕穗期去1/2叶,效果则相反。表明在旱种条件下,水稻基部节间α-淀粉酶活性高,促进了节间贮存淀粉的降解,降低了基部节间强度,造成旱种水稻的倒伏。

关键词: 玉米, 基因型, 高温, 产量, 生理机制

Abstract: Lodging is one of the most important factors restricting the wide extension of dry-cultivated rice (DCR). The objective of the study was to investigate the reasons for lodging in DCR using Shanyou 63 (indica hybrid combination) and 9516 (japonica) as materials. The results showed that the lodging percentage in DCR was significantly higher than that in conventional moist-cultivated rice (MCR), leading to significant decrease in seed-setting percentage and grain weight, and grain yield in DCR. The mechanical strength (thickness and weight per centimeter) and carbohydrate (especially starch) content in basal internodes from heading to maturity were much lower in DCR than in MCR, while α-amylase activity in basal internodes was higher in DCR than in MCR. The starch content was very significantly and positively correlated with thickness and weight per centimeter of basal internodes, and significantly or very significantly and negatively correlated with α-amylase activity in basal internodes. The starch exportation was significantly or very significantly and positively correlated with α-amylase activity. The application of silicon and potassium fertilizers could decrease α-amylase activity and increase the starch content in basal internodes, enhance the mechanical strength of basal internodes, decrease the lodging percentage, and increase seed-setting percentage and grain weight, result in the increase of grain yield in DCR. The results were reversed when 1/2 leaves were cut at booting stage. The results above indicated that the higher α-amylase activity in basal internodes in DCR caused more starch degradation, decreasing the mechanical strength of basal internodes, and resulting in the lodging in DCR.

Key words: Maize, Genotype, High temperature, Yield, Physiological mechanism

[1]IPPC. Climate Change: the Supplementary Report to the IPPC Scientific Assessment. London: Cambridge University Press, 1992

[2]Trenberth K E. Atmospheric moisture residence times and cycling: Implications for rainfall rates with climate change. Clim Change, 1998, 39: 667–694

[3]Jin Z-Q(金之庆), Ge D-K(葛道阔), Zheng X-L(郑喜莲), Chen H(陈华). Assessing the potential of global climate change on maize production in China. Acta Agron Sin (作物学报), 1996, 22(5): 513–524 (in Chinese with English abstract)

[4]Mitchell J C, Petolino J F. Heat stress effect on isolated reproductive organs of maize. Plant Physiol, 1988, 133: 625–628

[5]Yang J C, Zhang J H. Grain filling of cereals under soil drying. New Phytologist, 2006, 169: 223–236

[6]Zhang B-R(张保仁). Studies on Effect of High Temperature on Yield and Quality and Regulation in Maize (Zea mays L.). PhD Dissertation of Shandong Agricultural University, 2003 (in Chinese with English abstract)

[7]Zhang J-W(张吉旺), Dong S-T(董树亭), Wang K-J(王空军), Liu P(刘鹏), Hu C-H(胡昌浩). Effects of increasing field temperature on photosynthetic characteristics of summer maize. Chin J Appl Ecol (应用生态学报), 2008, 19(1): 81–86 (in Chinese with English abstract)

[8]Hu X-L(胡秀丽), Li Y-H(李艳辉), Yang H-R(杨海荣), Liu Q-J(刘全军). Heat shock protein 70 may improve the ability of antioxidant defense induced by the combination of drought and heat in maize leaves. Acta Agron Sin (作物学报), 2010, 36(4): 636–644 (in Chinese with English abstract)

[9]Wang Y-Z(王艳哲), Cui Y-H(崔彦宏), Zhang L-H(张丽华), Li J-C(李金才). Comparative study on methods for testing pollen viability of maize. J Maize Sci (玉米科学), 2010, 18(3): 173–176 (in Chinese with English abstract)

[10]Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol, 1980, 31: 491–543

[11]Zhang X-Z(张宪政). Crop Physiology Research Method (作物生理研究法). Beijing: Agriculture Press, 1992. pp 140–142, 197–198 (in Chinese)

[12]Zhao S-J(赵世杰), Xu C-C(许长成), Zou Q(邹琦), Meng Q-W(孟庆伟). Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol Commun (植物生理学通讯), 1994, 30(3): 207–210 (in Chinese)

[13]Sun Q-Q(孙庆泉), Wu Y-Q(吴元奇), Hu C-H(胡昌浩), Dong S-T(董树亭), Rong T-Z(荣廷昭), Zhang Y(张颖). Physiological activities and multiplication of endosperm cell at filling stage of kernels with different yield potential in maize. Acta Agron Sin (作物学报) , 2005, 31(5): 612–618 (in Chinese with English abstract)

[14]Zou Q(邹琦). Guide to Physiological and Biochemical Experiments (植物生理生化实验指导). Beijing: China Agriculture Press, 1995. pp 30–31 (in Chinese)

[15]Plaut Z, Butow B J, Blumenthal C S, Wrigley C W. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post anthesis water deficit and elevated temperature. Field Crops Res, 2004, 86: 185–198

[16]Yang J-C(杨建昌), Wang Z-Q(王志琴), Lang Y-Z(郎有忠), Zhu Q-S(朱庆森). ATPase activity in the developing grain and its regulation in intersubspecific hybrid rice. J Yangzhou Univ (Nat Sci)(扬州大学学报•自然科学版), 1998, 1(1): 13–17 (in Chinese with English abstract)

[17]Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci, 1981, 21: 43–47

[18]Zhang R-H(张仁和), Zheng Y-J(郑友军), Ma G-S(马国胜), Zhang X-H(张兴华), Lu H-T(路海东), Shi J-T(史俊通), Xue J-Q(薛吉全). Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding. Acta Ecol Sin (生态学报), 2011, 31(5): 1303–1311 (in Chinese with English abstract)

[19]Vettakkorumakankav N N, Falk D, Saxena P, Fletcher R A. A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol, 1999, 40: 542–548

[20]Guo T-C(郭天财), Wang C-Y(王晨阳), Zhu Y-J(朱云集), Wang H-C(王化岑), Li J-X(李九星), Zhou J-Z(周继泽). Effects of high temperature on the senescence of root and top-partial of wheat plant in the later stage. Acta Agron Sin (作物学报), 1998, 24(6): 957–962 (in Chinese with English abstract)

[21]Huang S-M(黄升谋), Zou Y-B(邹应斌). Effects of sink source ratio on roots and leaves senescence in hybrid rice. J Hunan Agric Univ (Nat Sci) (湖南农业大学学报•自然科学版), 2002, 28(3): 192–194 (in Chinese with English abstract)

[22]Zhang J-W(张吉旺). Effects of Light and Temperature Stress on Physiological Characteristics of Yield and Quality in Maize (光温胁迫对玉米产量和品质及其生理特性的影响). PhD Dissertation of Shandong Agricultural University, 2005 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[11] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!