欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 848-856.doi: 10.3724/SP.J.1006.2012.00848

• 耕作栽培·生理生化 • 上一篇    下一篇

旱种水稻基部节间性状与倒伏的关系及其生理机制

刘立军,王康君,葛立立,范苗苗,张自常,王志琴,杨建昌*   

  1. 扬州大学农学院江苏省作物遗传生理重点实验室 / 农业部长江中下游作物生理生态与栽培重点开放实验室,江苏扬州225009
  • 收稿日期:2011-09-26 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317, Fax: 0514-87979317
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2012CB114306),国家自然科学基金国际重大合作项目(31061140457)和国家公益性行业(农业)科研专项(201103003)资助。

Relationship between Characteristics of Basal Internodes and Lodging and Its Physiological Mechanism in Dry-cultivated Rice

LIU Li-Jun,WANG Kang-Jun,Ge Li-Li,FAN Miao-Miao,ZHANG Zi-Chang,WANG Zhi-Qin,YANG Jian-Chang*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Crop Physiology, Ecology and Cultivation in Middle and Lower Reaches of Yangtze River of Ministry of Agriculture, Yangzhou University, Yangzhou 225009, China
  • Received:2011-09-26 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317, Fax: 0514-87979317

摘要: 倒伏是制约旱种水稻大面积推广的主要因素之一。以籼型杂交稻汕优63和粳稻9516为材料,研究了旱种水稻倒伏的原因及其机理。结果表明,与水种相比,旱种水稻的倒伏率明显高,结实率和粒重明显降低,产量明显降低。自抽穗至成熟,旱种水稻基部节间强度(厚度、单位长度重量)、碳水化合物(尤其是淀粉)含量低于常规水种稻,α-淀粉酶活性明显高于水种稻。水稻基部节间淀粉含量与节间厚度和单位长度重量呈极显著正相关,与α-淀粉酶活性呈显著或极显著负相关。淀粉输出与α-淀粉酶活性呈显著或极显著正相关。施用硅、钾肥能降低旱种水稻基部节间α-淀粉酶活性,提高基部节间淀粉含量,增强基部节间强度,大幅度降低倒伏率,提高旱种水稻的结实率和粒重,从而提高产量。孕穗期去1/2叶,效果则相反。表明在旱种条件下,水稻基部节间α-淀粉酶活性高,促进了节间贮存淀粉的降解,降低了基部节间强度,造成旱种水稻的倒伏。

关键词: 旱种水稻, 倒伏, 基部节间, 生理机制

Abstract: Lodging is one of the most important factors restricting the wide extension of dry-cultivated rice (DCR). The objective of the study was to investigate the reasons for lodging in DCR using Shanyou 63 (indica hybrid combination) and 9516 (japonica) as materials. The results showed that the lodging percentage in DCR was significantly higher than that in conventional moist-cultivated rice (MCR), leading to significant decrease in seed-setting percentage and grain weight, and grain yield in DCR. The mechanical strength (thickness and weight per centimeter) and carbohydrate (especially starch) content in basal internodes from heading to maturity were much lower in DCR than in MCR, while α-amylase activity in basal internodes was higher in DCR than in MCR. The starch content was very significantly and positively correlated with thickness and weight per centimeter of basal internodes, and significantly or very significantly and negatively correlated with α-amylase activity in basal internodes. The starch exportation was significantly or very significantly and positively correlated with α-amylase activity. The application of silicon and potassium fertilizers could decrease α-amylase activity and increase the starch content in basal internodes, enhance the mechanical strength of basal internodes, decrease the lodging percentage, and increase seed-setting percentage and grain weight, result in the increase of grain yield in DCR. The results were reversed when 1/2 leaves were cut at booting stage. The results above indicated that the higher α-amylase activity in basal internodes in DCR caused more starch degradation, decreasing the mechanical strength of basal internodes, and resulting in the lodging in DCR.

Key words: Dry-cultivated rice, Lodging, Basal internodes, Physiological mechanism

[1]Guerra L C, Bhuiyan S I, Tuong T P, Barker R. Producing More Rice with Less Water from Irrigated Systems. SWIM Paper 5. IWMI/IRRI, Colombo, Sri Lanka, 1998, 24: 14–16

[2]Ouman B A M, Toung T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manage, 2001, 49: 11–30

[3]Toung T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod Sci, 2005, 8: 231–241

[4]Won J G, Choi J S, Lee S P, Son S H, Chung S O. Water saving by shallow intermittent irrigation and growth of rice. Plant Prod Sci, 2005, 8: 487–492

[5]Yang C, Yang L, Yang Y, Ouyang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manage, 2004, 70: 67–81

[6]Wang C-C(王成才), Li F-X(李福欣). Analysis on the technique of rice humid irrigation and the water saving and production increase mechanism. J Heilongjiang Hydraulic Eng Coll (黑龙江水专学报), 2003, 30(1): 59–60 (in Chinese with English abstract)

[7]Wu B-S(巫伯舜). Dry-Cultivated Techniques in Rice (水稻的旱种技术). Beijing: Agriculture Press, 1985. pp 12–17 (in Chinese)

[8]Huang Y-D(黄义德), Zhang Z-L(张自立), Wei F-Z(魏凤珍), Li J-C(李金才). Ecophysiological effect of dry-cultivated and plastic film mulched rice planting. Chin J Appl Ecol (应用生态学报), 1999, 10(3): 305–308 (in Chinese with English abstract)

[9]Zhang R-K(张让康), Liu B-K(刘本坤). Dry-cultivated rice production and cultivation techniques. Hunan J Agric Sci (湖南农业科学), 1988, (2): 30–32 (in Chinese)

[10]Liang Y-C(梁永超), Hu F(胡锋), Yang M-C(杨茂成), Zhu X-L(朱遐亮), Wang G-P(王广平), Wang Y-L(王永乐). Mechanisms of high yield and irrigation water use efficiency of rice in plastic film mulched dryland. Sci Agric Sin (中国农业科学), 1999, 32(1): 26–32 (in Chinese with English abstract)

[11]Dong Q-C(董全才), Yi J-Z(易杰忠). Growth characteristics and high-yielding techniques in dry-cultivated with plastic film mulching rice. Chin Agric  Sci Bull (中国农学通报), 1999, 15(4): 17–20 (in Chinese)

[12]Wu W-G(吴文革), Xu X-J(徐秀娟), Chen Z-Q(陈周前), Zheng L-Y(郑乐娅), Wang S-Y(王书应). Study on rice growth characteristics under dry-land cultivation and its culture technique. J Anhui Agric Sci (安徽农业科学), 1998, 26(3): 227–230 (in Chinese with English abstract)

[13]Zhan R-K(张让康), Liu B-K(刘本坤). The relationship analysis of the yield components of various rice varieties in non-irrigated conditions. J Hunan Agric Coll (湖南农学院学报), 1989, 15(2): 7–11 (in Chinese with English abstract)

[14]Zhang Q-Y(张秋英), Ou-Yang Y-N(欧阳由男), Dai W-M(戴伟民), Yu S-M(禹盛苗), Zhuang J-Y(庄杰云), Jin Q-Y(金千瑜), Cheng S-H(程式华). Relationship between traits of basal elongation internodes and lodging and QTL mapping in rice. Acta Agron Sin (作物学报), 2005, 31(6): 712–717 (in Chinese with English abstract)

[15]Xiao Y-H(肖应辉), Luo L-H(罗丽华), Yan X-Y(闫晓燕), Gao Y-H(高艳红), Wang C-M(王春明), Jiang L(江玲), Yano M(矢野昌裕), Zhai H-Q(翟虎渠), Wan J-M(万建民). Quantitative trait locus analysis of lodging index in rice. Acta Agron Sin (作物学报), 2005, 31(3): 348–354 (in Chinese with English abstract)

[16]Yang S-M(杨世民), Xie L(谢力), Zheng S-L(郑顺林), Li J(李静), Yuan J-C(袁继超). Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. Acta Agron Sin (作物学报), 2009, 35(1): 93–103 (in Chinese with English abstract)

[17]Kashiwagi T, Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiol, 2004, 134: 676–683

[18]Sakata I, Sakai M, Imbe T. The correlation of the resistance to root lodging with growth angle, diameter and pulling strength of grown roots in rice seedlings. Jpn J Crop Sci, 2003, 72: 56–61

[19]Terashima K, Sakai K, Kabaki N. Relationship between biomass of an individual hill and root lodging tolerance in direct seeded rice. Jpn J Crop Sci, 2002, 71: 161–168

[20]Yoshida S, Forno D, Cock J, Gomez K. Determination of sugar and starch in plant tissue. In: Yoshida S ed. Laboratory Manual for Physiological Studies of Rice. the Philippines: International Rice Research Institute, 1976. pp 46–49

[21]Sirou Y, Lecommandeur K, Lauriere C. Specific enzymic microassays for α-amylase and β-amylase in cereals. J Agric Food Chem, 1990, 38: 171–174

[22]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 1976, 72: 248–254

[23]Yoshida S. Physiological aspects of grain yield. Annu Rev Plant Physiol Plant Mol Biol, 1972, 23: 437–464

[24]Kobata T, Palta J A, Turner N C. Rate of development of postanthesis water deficits and grain filling of spring wheat. Crop Sci, 1992, 32: 1238–1242

[25]Murayama N, Oshima M, Tsukahara S. Studies on the dynamic status of substances during ripening processes in rice plant. Sci Soil Manure, 1961, 32: 261–265

[26]Murata Y, Matsushima S. Rice. In: Evans T ed. Crop Physiology. Cambridge: Cambridge University Press, 1975. pp 73–79

[27]Beck E, Ziegler P. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 95–117

[28]Preiss J. Regulation of the biosynthesis and degradation of starch. Annu Rev Plant Physiol Plant Mol Biol, 1982, 33: 431–454

[29]Gallagher J A, Volence J J, Turner L B, Pollock C J. Starch hydrolytic enzyme activities following defoliation of white clover. Crop Sci, 1997, 37: 1812–1818

[30]Rahman M S, Yoshida S. Effect of water stress on grain filling in rice. Soil Sci Plant Nutr, 1985, 31: 497–511

[31]Kobata T, Takami S. Maintenance of the grain growth in rice subject to water stress during the early grain filling. Jpn J Crop Sci, 1981, 50: 536–545

[32]Wang Z-Q(王志琴), Dai G-J(戴国钧), Yang J-C(杨建昌), Liu L-J(刘立军), Lang Y-Z(郞有忠), Zhu Q-S(朱庆森). Effect of water stress on carbon remobilization and activities of starch hydrolytic enzymes in rice stems. Jiangsu Agric Res (江苏农业研究),2001, 22(3): 1–6 (in Chinese with English abstract)

[33]Yang J C, Huang D F, Duan H, Tan G L, Zhang J H. Alternate wetting and moderate soil drying increases grain yield and reduces cadmium accumulation in rice grains. J Sci Food Agric, 2009, 89: 1728–1736

[34]Zhang H, Zhang S F, Yang J C, Zhang J H, Wang Z Q. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron J, 2008, 100: 726–734
[1] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[2] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[3] 赵雪, 周顺利. 玉米抗茎倒伏能力相关性状与评价研究进展[J]. 作物学报, 2022, 48(1): 15-26.
[4] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[5] 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 任桢, 刘昱茜, 顾立峰, 卢海潼, Irshad Ahmad, 焦秀荣, 孟天瑶, 周桂生. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应[J]. 作物学报, 2021, 47(4): 728-737.
[6] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[7] 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627.
[8] 樊海潮,顾万荣,杨德光,尉菊萍,朴琳,张倩,张立国,杨秀红,魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响[J]. 作物学报, 2018, 44(6): 909-919.
[9] 薛军,王群,李璐璐,张万旭,谢瑞芝,王克如,明博,侯鹏,李少昆. 玉米生理成熟后倒伏变化及其影响因素[J]. 作物学报, 2018, 44(12): 1782-1792.
[10] 薛军,李璐璐,谢瑞芝,王克如,侯鹏,明博,张万旭,张国强,高尚,白氏杰,初振东,李少昆. 倒伏对玉米机械粒收田间损失和收获效率的影响[J]. 作物学报, 2018, 44(12): 1774-1781.
[11] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响[J]. 作物学报, 2018, 44(02): 278-287.
[12] 蒯婕,左青松,陈爱武,程雨贵,梅少华,吴江生,周广生. 不同栽培模式对油菜产量和倒伏相关性状的影响[J]. 作物学报, 2017, 43(06): 875-884.
[13] 夏敏,胡群,梁健,张洪程,郭保卫,曹利强,陈厚存. 壮秆剂及用量对水稻产量和抗倒伏能力的影响[J]. 作物学报, 2017, 43(02): 296-306.
[14] 许俊伟,孟天瑶,荆培培,张洪程*,李超,戴其根,魏海燕,郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响[J]. 作物学报, 2015, 41(11): 1767-1776.
[15] 邹俊林,刘卫国,袁晋,蒋涛,叶素琴,邓榆川,杨晨雨,罗玲,杨文钰. 套作大豆苗期茎秆木质素合成与抗倒性的关系[J]. 作物学报, 2015, 41(07): 1098-1104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!