欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (06): 875-884.doi: 10.3724/SP.J.1006.2017.00875

• 耕作栽培·生理生化 • 上一篇    下一篇

不同栽培模式对油菜产量和倒伏相关性状的影响

蒯婕1,左青松2,陈爱武3,程雨贵4,梅少华5,吴江生1,周广生1,*   

  1. 1 华中农业大学植物科学技术学院,湖北武汉 430070;2扬州大学江苏省作物遗传生理重点实验室,江苏扬州 225009;3湖北省油菜办公室,湖北武汉 430070;4湖北省宜昌市农业科学研究院,湖北宜昌 443004;5武穴市农业局,湖北黄冈 435400
  • 收稿日期:2016-12-22 修回日期:2017-03-01 出版日期:2017-06-12 网络出版日期:2017-03-24
  • 通讯作者: 周广生, E-mail: zhougs@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项经费项目(201203096), 国家科技支撑计划项目(2014BAD11B03), 国家现代农业产业技术体系建设专项(NYCYTC-00510)和高校自主科技创新基金(2013PY001)资助。

Effects of Different Cultivation Modes on Canola Yield and Lodging Related Indices

KUAI Jie1,ZUO Qing-Song2,CHEN Ai-Wu3,CHENG Yu-Gui4,MEI Shao-Hua5,WU Jiang-Sheng1,ZHOU Guang-Sheng1,*   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; 2 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 3 Hubei Department of Rape Production Management, Wuhan 430070, China; 4 Yichang Academy of agricultural Sciences, Yichang 443004, China; 5 Wuxue Bureau of Agriculture, Huanggang 435400, China
  • Received:2016-12-22 Revised:2017-03-01 Published:2017-06-12 Published online:2017-03-24
  • Contact: 周广生, E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:

    This study was supported by the Special Fund for Agro-Scientific Research in the Public Interest (201203096), the National Key Technology R&D Program of China (2014BAD11B03), the China Agriculture Research System (NYCYTC-00510), and the Fundamental Research Funds for Central Universities (2013PY001).

摘要:

为建立与油菜相匹配的高产高效栽培管理方式,设置3种栽培模式即常规栽培(FP)、超高产栽培(SP)和高产高效栽培(HH),于2013—2014年在湖北枝江单季稻区用中熟油菜品种华双5号,武穴双季稻区用早熟品种华早291选择不同肥力田块(高肥力、低肥力)进行试验,测定3种栽培模式下油菜生物量和生育期间的光能资源利用率、产量、田间倒伏等指标。结果表明,与FP相比,在高、低肥力下,SH和HH均提高了各时期的光能截获率和光能利用效率,HH模式薹肥施用比例高,在后期光能截获率下降速率最低,仍保持较高的光合面积,有利于干物质的积累。SH模式和HH模式下,收获指数和产量均显著高于FP模式,且以SH模式最高。株高、根冠比和抗折力均表现为SH> HH> FP;倒伏指数与倒伏角度的变化趋势较为一致,在不同地力条件下均表现为SH > FP > HH。综上,HH模式的籽粒产量虽略低于SH模式,但不显著,而后期倒伏显著降低。与SH模式相比,HH模式通过增加种植密度,减少氮肥投入和施肥次数,起到了“以密抗倒、以密省肥”的效果,机械收获效率显著提高,可实现高产高效栽培。

关键词: 油菜, 栽培模式, 产量, 倒伏, 光能利用

Abstract:

To establish a reasonable cultivation and management mode matching canola production, three cultivation modes including farmers practice cultivation (FP), super high cultivation (SH) and high yield and high efficiency cultivation (HH) were adopted with middle-mature winter canola Huashuang 5 in single cropping rice region (Zhijiang) and early-mature winter canola Huazao 291 in double-rice cropping region (Wuxue) of Hubei province at high and low soil fertility levels. Biomass accumulation, radiation use efficiency (RUE), yield and lodging related indices were investigated and analyzed. The light inception rate (LIR) and RUE under SH and HH were higher than those under FP during whole growth period. The deceleration rate of LIR at the end of growth stage was least under HH as the rate of bolting nitrogen increased, which was benefit for biomass accumulation. The harvest index and yield of SH and HH were significantly higher than those of FP. Although HH had higher yield than SH, the difference was not significant. The lodging index of HH was lower than that of SH which indicated that HH had higher lodging resistance. All these revealed that HH could achieve high yield and high lodging resistance with lower nitrogen cost compared with SH. It is concluded that the HH cultivation model can promote the mechanical harvesting efficiency by increasing lodging resistance and reducing nitrogen cost due to higher plant density. Therefore, HH should be encouraged to extend in the Yangtze River Valley in the future for increasing mechanical canola productivity.

Key words: Canola, Cultivation modes, Yield, Lodging, Radiation use efficiency

[1] Mcansh J. Place of rapeseed in the edible oil market. J Am Oil Chem Soc, 1973, 50: 404–406 [2] 国家统计局. 中国农业机械化统计年鉴. 北京: 中国统计出版社, 2014 National Bureau of Statistics of the People’s Republic of China. China’s Agricultural Mechanization Statistical Yearbook. Beijing: China Statistics Press, 2014 (in Chinese) [3] Hua S, Zhang Y, Yu H, Fang Z. Paclobutrazol Application effects on plant height, seed yield and carbohydrate metabolism in canola. Internatl J Agric Biol, 2014, 16: 471–479 [4] Novacek M J, Mason S C, Galusha T D, Yaseen M, Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agron J, 2013, 105: 268–276 [5] Yoshinaga S. Improved lodging resistance in rice (Oryza sativa L.) cultivated by submerged direct seeding using a newly developed hill seeder. Japan Agric Res Quart, 2005, 39: 147–152 [6] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35–49 [7] Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res, 2005, 94: 103–113 [8] Sinclair T R, Muchow R C. Radiation use efficiency. Adv Agron, 1999, 65: 215–265 [9] Caviglia O P, Sadras V O. Effect of nitrogen supply on crop conductance, water- and radiation-use efficiency of wheat. Field Crops Res, 2001, 69: 259–266 [10] Crook M J, Ennos A R. The effect of nitrogen and growth regulators on stem and root characteristics associated with lodging in two cultivars of winter wheat. J Exp Bot, 1995, 46: 931–938 [11] Sheehy J E, Peacock J M. Microclimate, Canopy Structure and Photosynthesis in Canopies of three contrasting temperate forage grasses: I. Canopy structure and growth. Ann Bot, 1977, 41: 567–578 [12] Angadi S V, Cutforth H W, McConkey B G, Gan Y. Yield adjustment by canola grown at different plant populations under semiarid conditions. Crop Sci, 2003, 43: 1358–1366 [13] Gou L, Huang J J, Zhang B, Li T, Sun R, Zhao M. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agron Sin, 2007, 33: 1688–1695 [14] Novacek M J, Mason S C, Galusha T D, Yaseen M. Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agron J, 2013, 105: 268–276 [15] Yoshinaga S. Improved lodging resistance in rice (Oryza sativa L.) cultivated by submerged direct seeding using a newly developed hill seeder. Jpn Agric Res Quart, 2005, 39: 147–152 [16] Kuai J, Sun Y, Zuo Q, Huang H, Liao Q, Wu C, Lu J, Wu J, Zhou G. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep, 2015, 5: 231–250 [17] 杨阳, 蒯婕, 吴莲蓉, 刘婷婷, 孙盈盈, 左青松, 吴江生, 周广生. 多效唑对油菜机械收获关键性状的调控研究进展. 作物杂志, 2015, (4): 5–10 Yang Y, Kuai J, Wu L R, Liu T T, Sun Y Y, Zuo Q S, Wu J S, Zhou G S. Research advances on mechanized key traits regulated by paclobutrazol in rapeseed. Crops, 2015, (4): 5–10 (in Chinese with English abstract) [18] 张喜娟, 李红娇, 李伟娟, 徐正进, 陈温福, 张文忠, 王嘉宇. 北方直立穗型粳稻抗倒性的研究. 中国农业科学, 2009, 42: 2305–2313 Zhang X, Li H, Li W, Xu Z, Chen W, Zhang W, Wang J. The lodging resistance of erect panicle japonica rice in northern China. Sci Agric Sin, 2009, 42: 2305–2313 (in Chinese with English abstract) [19] 屈会娟, 李金才, 沈学善, 魏凤珍, 王成雨, 郅胜军. 种植密度和播期对冬小麦品种兰考矮早八干物质和氮素积累与转运的影响. 作物学报, 2009, 35: 124–131 Qu H, Li J, Shen X, Wei F, Wang C, Zhi S. Effects of plant density and seeding date on accumulation and translocation of dry matter and nitrogen in winter wheat cultivar Lankao Ai-zao 8. Acta Agron Sin, 2009, 35: 124–131 [20] 左青松, 曹石, 杨士芬, 黄海东, 廖庆喜, 冷锁虎, 吴江生, 周广生. 不同氮肥和密度对油菜机械收获损失率的影响. 作物学报, 2014, 40: 1109–1116 Zuo Q S, Cao S, Yang S F, Huang H D, Liao Q X, Leng S H, Wu J S, Zhou G S. Effects of nitrogen fertilizer and planting density on yield loss percentage of mechanical harvesting in rapeseed. Acta Agron Sin, 2014, 40: 1109–1116 (in Chinese with English abstract) [21] 刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波, 次旦. 直播冬油菜干物质积累及氮磷钾养分的吸收利用. 中国农业科学, 2011, 44: 4823–4832 Liu X W, Lu J W, Li X K, Bu R Y, Liu B, Ci D. Dry matter accumulation and N, P, K absorbtion and utilization in direct seeding winter oilseed (Brassica napus L.). Sci Agric Sin, 2011, 44: 4823–4832 (in Chinese with English abstract) [22] Yunusa I A M, Siddique K H M, Belford R K, Karimia M M. Effect of canopy structure on efficiency of radiation interception and use in spring wheat cultivars during the pre-anthesis period in a Mediterranean-type environment. Field Crops Res, 1993, 35: 113–122. [23] Leach J E, Stevenson H J, Rainbow A J, Mullen L A. Effects of high plant populations on the growth and yield of winter oilseed rape (Brassica napus L.). J Agric Sci, 1999, 132: 173–180 [24] Dordas C. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source–sink relations. Eur J Agron, 2009, 30: 129–139 [25] Olesen J E, Berntsen J, Hansen E M, Petersenb B M, Petersen J. Crop nitrogen demand and canopy area expansion in winter wheat during vegetative growth. Eur J Agron, 2002, 16: 279–294 [26] Borrell A K, Hammer G L. Nitrogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci, 2000, 40: 1295–1307 [27] Shimono H, Hasegawa T, Iwama K. Response of growth and grain yield in paddy rice to cool water at different growth stages. Field Crops Res, 2002, 73: 67–79 [28] 马兆惠, 车仁君, 王海英, 张惠君, 谢甫绨. 种植密度和种植方式对超高产大豆根系形态和活力的影响. 中国农业科学, 2015, 48: 1084–1094 Ma Z H, Che R J, Wang H Y, Zhang H J, Xie F T. Effect of different seeding rates and planting patterns on root morphological traits and root vigor of super-high-yield soybean cultivars. Sci Agric Sin, 2015, 48: 1084–1094 (in Chinese with English abstract) [29] Vamerali T, Saccomani M, Bona S. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil, 2003, 255: 157–167 [30] 丁红, 张智猛, 戴良香, 杨吉顺, 慈敦伟, 秦斐斐, 宋文武, 万书波. 水氮互作对花生根系生长及产量的影响. 中国农业科学, 2015, 48: 872–881 Ding H, Zhang Z M, Dai L X, Yang J S, Ci D W, Qing F F, Song W W, Wang S B. Effects of water and nitrogen interaction on peanut root growth and yield. Sci Agric Sin, 2015, 48: 872–881 (in Chinese with English abstract) [31] 王树丽, 贺明荣, 代兴龙, 周晓虎. 种植密度对冬小麦根系时空分布和氮素利用效率的影响. 应用生态学报, 2012, 23: 1839–1845 Wang S L, He M R, Dai X L, Zhou X H. Effects of planting density on root spatiotemporal distribution and plant nitrogen use efficiency of winter wheat. Chin J Appl Ecol, 2012, 23: 1839–1845 (in Chinese with English abstract) [32] Yamaguchi J, Tanaka A. Minimum space for root development without mechanical stress for obtaining a high yield of rice. Soil Sci Plant Nutr, 1990, 36: 515–518 [33] 苏伟, 鲁剑巍, 周广生, 李小坤, 韩自航, 雷海霞. 免耕及直播密度对油菜生长、养分吸收和产量的影响. 中国农业科学, 2011, 44: 1519–1526 Su W, Lu J W, Zhou G S, Li X K, Hang Z H, Lei H X. Effect of no-tillage and direct sowing density on growth, nutrient uptake and yield of rapeseed (Brassica napus L.). Sci Agric Sin, 2011, 44: 1519–1526 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[11] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[15] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!