作物学报 ›› 2020, Vol. 46 ›› Issue (7): 1120-1127.doi: 10.3724/SP.J.1006.2020.94173
王丹丹1,**,柳洪鹃1,**,王红霞2,张鹏2,*(),史春余1,*()
WANG Dan-Dan1,**,LIU Hong-Juan1,**,WANG Hong-Xia2,ZHANG Peng2,*(),SHI Chun-Yu1,*()
摘要:
蔗糖作为光合产物的主要运输形式, 其跨膜运输主要由蔗糖转运蛋白介导。本研究采用RACE技术, 从甘薯[Ipomoea batatas (L.) Lam.]中克隆得到甘薯蔗糖转运蛋白基因IbSUT3 (GenBank登录号为MN233361)。IbSUT3基因全长1607 bp, 开放阅读框为1518 bp, 编码505个氨基酸。IbSUT3蛋白预测分子量为53.82 kD, 等电点(pI)为9.19, 含有12个跨膜结构域。序列比对表明, IbSUT3属于Group I亚族, 与其他物种的SUTs蛋白高度相似, 但与Group IV亚族的蔗糖转运蛋白在进化上具有明显差别。利用酵母表达体系SUSY7/ura3证明IbSUT3编码有功能的蔗糖转运蛋白。亚细胞定位发现, IbSUT3蛋白定位在烟草原生质体膜上。实时荧光定量PCR结果表明, IbSUT3基因在甘薯不同组织中均有表达, 但在叶片中表达最高; 非生物胁迫(低温、高盐、干旱)和外源脱落酸均可诱导IbSUT3基因在叶片中的表达, 表明该基因响应多种非生物胁迫, 参与植物对脱落酸的响应。
[1] |
Lalonde S, Wipf D, Frommer W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 2004,55:341-372.
doi: 10.1146/annurev.arplant.55.031903.141758 pmid: 15377224 |
[2] |
Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta, 2018,247:587-611.
pmid: 29138971 |
[3] | Peng C C, Zhao X L. Function and regulation of plant sucrose transporter. Plant Physiol Commun, 2010,46:317-324. |
[4] |
Liesche J, Krügel U, He H, Chincinska I, Hackel A, Kühn C. Sucrose transporter regulation at the transcriptional, post-transcriptional and post-translational level. J Plant Physiol, 2011,168:1426-1433.
doi: 10.1016/j.jplph.2011.02.005 pmid: 21444123 |
[5] |
Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci, 2013,38:151-159.
doi: 10.1016/j.tibs.2013.01.003 pmid: 23403214 |
[6] | 高蕾, 肖文芳, 李文燕, 彭昌操. 拟南芥蔗糖转运蛋白(SUTs)的功能研究进展. 分子植物育种, 2011,9:251-255. |
Gao L, Xiao W F, Li W Y, Peng C C. Research progress on the function of Arabidopsis sucrose transporter (SUTs). Mol Plant Breed, 2011,9:251-255 (in Chinese with English abstract). | |
[7] | 孙学武, 谭炎宁, 孙志忠, 袁定阳, 段美娟. 水稻蔗糖转运蛋白研究进展. 生命科学研究, 2014,18:157-161. |
Sun X W, Tan Y N, Sun Z Z, Yuan D Y, Duan M J. Research progress on rice sucrose transporter. Life Sci Res, 2014,18:157-161 (in Chinese with English abstract). | |
[8] |
Chincinska I A. Liesche J, Krügel U, Michalska J, Geigenberger P, Grimm B, Kühn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol, 2008,146:515-528.
pmid: 18083796 |
[9] | 贺红霞, 陈亮, 康爽. 玉米ZmSUT4-J基因的克隆与植物表达载体构建. 东北农业科学, 2015,40(3):18-22. |
He H X, Chen L, Kang S. Cloning of maize ZmSUT4-J gene and construction of plant expression vector. Northeast Agric Sci, 2015,40(3):18-22 (in Chinese with English abstract). | |
[10] |
Payyavula R S, Tay K H, Tsai C J. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J, 2015,65:757-770.
pmid: 21261761 |
[11] |
Chincinska I, Gier K, Krügel U, Liesche J, He H, Grimm B, Harren F J, Cristescu S M, Kühn C. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Front Plant Sci, 2013,4:26.
pmid: 23429841 |
[12] |
Bürkle L, Hibberd J M, Quick W P, Kuhn C, Hirner B, Frommer W B. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol, 1998,118:59-68.
doi: 10.1104/pp.118.1.59 pmid: 9733526 |
[13] |
Gong X, Liu M, Ruan Y, Ding R, Ji Y, Zhang N, Zhang S, Farmer J, Wang C. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiol Plant, 2014,153:119-136.
pmid: 24814155 |
[14] | Yan L, Gu Y, Hua Q, Zhang Y Z. Two pairs of sucrose transporters in Ipomoea batatas (L.) Lam are predominantly expressed in sink leaves and source leaves respectively. Plant Sci, 2010,179:250-256. |
[15] | 李岩, 王海燕, 张义正. 甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位. 应用与环境生物学报, 2010,16:798-802. |
Li Y, Wang H Y, Zhang Y Z. Localization of sweet potato sucrose transporter IbSUT1x in yeast cells. Chin J Appl Environ Biol, 2010,16:798-802 (in Chinese with English abstract). | |
[16] |
Riesmeier J W, Willmitzer L, Frommer W B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J, 1992,11:4705-4713.
pmid: 1464305 |
[17] |
Drechsel G, Bergler J, Wippel K, Sauer N, Vogelmann K, Hoth S. C-terminal armadillo repeats are essential and sufficient for association of the plant U-box armadillo E3 ubiquitin ligase SAUL1 with the plasma membrane. Exp Bot, 2011,62:775-785.
doi: 10.1093/jxb/erq313 |
[18] |
Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J, 1994,5:421-427.
doi: 10.1111/j.1365-313x.1994.00421.x pmid: 8180625 |
[19] | 伍宝朵, 周蓉, 陈海峰. 蔗糖载体调控作物“源、库”分配的研究进展. 中国农学通报, 2012,28(6):26-30. |
Wu B D, Zhou R, Chen H F. The progress about sucrose transporters mediate crop sucrose from source to sink. Chin Agric Sci Bull, 2012,28(6):26-30 (in Chinese with English abstract). | |
[20] |
Weise A, Barker L, Kühn C, Buschmann H, Frommer W B, Ward J M. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell, 2000,12:1345-1355.
pmid: 10948254 |
[21] | Deol K. Molecular Cloning and Functional Characterization of a New Sucrose Transporter in Hexaploid Wheat (Triticum aestivum L.). PhD Dissertation of the University of Manitoba, Manitoba, Canada, 2012. |
[22] |
Riesmeier J W, Willmitzer L, Frommer W B. Antisense repression of the sucrose transporter affects assimilate partitioning in transgenic potato plants. EMBO J, 1994,13:1-7.
pmid: 8306952 |
[23] |
Kühn C, Fernie A R, Roessner-Tunali U. The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol, 2003,131:102-113.
pmid: 12529519 |
[24] |
Gottwald J R, Krysan P J, Young J C, Evert R F, Sussman M R. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci USA, 2001,97:13979-13984.
doi: 10.1073/pnas.250473797 pmid: 11087840 |
[25] |
Burkle L. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol, 1998,118:59-68.
doi: 10.1104/pp.118.1.59 pmid: 9733526 |
[26] | Xu Q, Chen S, Yun J R. Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol, 2018,17:930-945. |
[27] |
Noiraud N. The sucrose transporter ofCelery identification and expression during salt stress. Plant Physiol, 2000,122:1447-1456.
doi: 10.1104/pp.122.4.1447 pmid: 10759540 |
[1] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[2] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[3] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
[4] | 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148. |
[5] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[6] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[7] | 杨阳, 李淮琳, 胡利民, 范楚川, 周永明. 白菜型油菜srb多室性状的遗传分析与分子鉴定[J]. 作物学报, 2021, 47(3): 385-393. |
[8] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321. |
[9] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[10] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[11] | 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543. |
[12] | 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638. |
[13] | 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30. |
[14] | 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379. |
[15] | 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828. |
|