欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (1): 116-124.doi: 10.3724/SP.J.1006.2021.04087

• 耕作栽培·生理生化 • 上一篇    下一篇

施钙对酸性红壤花生根系内生细菌群落结构的影响

张玮1(), 洪艳云1, 刘登望2, 张博文2, 易图永1,*(), 李林2,*()   

  1. 1湖南农业大学植物保护学院 / 植物病虫害生物学与防控湖南省重点实验室, 湖南长沙 410128
    2湖南农业大学旱地作物研究所, 湖南长沙 410128
  • 收稿日期:2020-04-02 接受日期:2020-09-13 出版日期:2021-01-12 网络出版日期:2020-09-22
  • 通讯作者: 易图永,李林
  • 作者简介:E-mail: 349187910@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD1000900)

Effects of calcium application on the structural diversity of endophytic bacterial community in peanut roots under acidic red soil cultivation

ZHANG Wei1(), HONG Yan-Yun1, LIU Deng-Wang2, ZHANG Bo-Wen2, YI Tu-Yong1,*(), LI Lin2,*()   

  1. 1College of Plant Protection, Hunan Agricultural University / Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Changsha 410128, Hunan, China
    2Institute of Dryland Crops of Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2020-04-02 Accepted:2020-09-13 Published:2021-01-12 Published online:2020-09-22
  • Contact: YI Tu-Yong,LI Lin
  • Supported by:
    National Research and Development Program of China(2018YFD1000900)

摘要:

花生是我国重要的油料作物, 也是嗜钙作物。为了探讨施钙对种植在酸性红壤下的花生根系内生细菌多样性的影响, 本研究对不同处理、不同生育期的花生植株根系内生细菌基因组进行16SrRNA基因V3-V4区深度测序, 分析种植于酸性红壤中施钙处理和对照下花生植株根系微生物群落结构。结果发现, 根系内生菌群落中克雷伯氏菌属(Klebsiella)与肠杆菌属(Enterobacter)在所有样品组中均为优势属且相对丰度较高; 花针期不同处理下假单胞菌属(Pseudomonas)与赖氨酸芽孢杆菌属(Lysinibacillus)在施钙组中相对丰度显著高于对照组, 而劳尔氏属(Ralstonia)的相对丰度在施钙组中显著降低; Network共发生网络分析显示, 施钙组根系内生菌的网络连接相对紧密。综上结果表明, 花生根系内生菌群落组成受施钙处理和植株生长发育共同影响, 施钙能改变根系内生菌群落结构, 提高花生植株应对病原菌侵袭。所得结果为今后通过施钙改良酸性土壤品质进而提高花生植株抗病能力提供了理论参考。

关键词: 花生, 钙, 酸性红壤, 内生细菌, 微生物多样性

Abstract:

Peanut is an important economic crop and calcium-loving crop in China. In order to explore the effect of calcium application on the diversity of endophytic bacteria in peanut roots planted in acid red soil, the genomes of endophytic bacteria in peanut roots of different treatments and different growth stages were deeply sequenced by 16SrRNA gene V3-V4 region, and the root microbial community structure of peanut plants planted in acid red soil and control was analyzed. The results showed that Klebsiella and Enterobacter were the dominant genera with high relative abundance in the endophytic bacterial community from all sample groups. The relative abundance of Pseudomonas and Lysinibacillus were significantly higher than that from the control group, while the relative abundance of Ralstonia decreased significantly in the calcium application groups during the pod-pin stage at P ≤ 0.05. The interaction network analysis showed that the connection of root endophytic bacterial in calcium application group was relatively close. We reasonably inferred that the composition of peanut root endophytic bacterial community was affected by calcium application and plant growing development. Calcium application could change the community structure and improve the ability of peanut to cope with external stress. This study may lay a foundation for improving the quality of acid soil and improving the disease resistance of peanut by applying calcium in the future.

Key words: peanut, calcium, acid red soil, endophytic bacteria, microbial diversity

表1

16S扩增子测序样品分组编号"

生育期
Stage
不施钙组送样编号
Sample groups without calcium application
施钙组送样编号
Sample groups with calcium application
苗期 Seeding stage B.R.1, B.R.2, B.R.3 BC.R.1, BC.R.2, BC.R.3
花针期 Acicula forming stage F.R.1, F.R.2, F.R.3 FC.R.1, FC.R.2, FC.R.3
饱果期 Pod maturing stage P.R.1, P.R.2, P.R.3 PC.R.1, PC.R.2, PC.R.3

图1

根系内生菌基因组16S V3-V4的PCR扩增电泳图 样品编号同表1。"

图2

Venn分析与UPGMA聚类 A: 不同样品组根系内生菌差异OTUs韦恩图; B: 不同样品组根系内生菌UPGMA聚类树。样品编号同表1。"

图3

不同样品组花生根系内生菌Top 20物种相对丰度柱形图 样品编号同表1。"

表2

属分类水平下不同生育期不同处理相对丰度百分比Top 10的根系内生菌"

处理
Treatment
样品编号
Sample group
优势菌属
Dominant genus
相对丰度百分比PRA (%) 处理
Treatment
样品编号
Sample group
优势菌属
Dominant genus
相对丰度百分比PRA(%)
苗期不施钙
Seeding stage without calcium
B.R. Acinetobacter 16.9 苗期施钙 Seeding stage with calcium
BC.R. Klebsiella 30.1
Klebsiella 16.8 Bacillus 26.3
Enterobacter 7.5 Enterobacter 6.1
Anoxybacillus 5.0 Enhydrobacter 5.1
Herbaspirillum 4.9 Bradyrhizobium 1.8
花针期不施钙
Acicula forming stage without calcium
F.R. Klebsiella 16.9 花针期施钙
Acicula forming stage with calcium
FC.R. Klebsiella 37.2
Enterobacter 8.9 Stenotrophomonas 13.1
Acinetobacter 6.7 Pseudomonas 8.7
Pantoea 5.0 Comamonas 8.3
Dyella 3.7 Enterobacter 7.4
饱果期不施钙
Pod maturing stage without calcium
P.R. Klebsiella 33.4 饱果期施钙
Pod maturing stage with calcium
PC.R. Klebsiella 30.9
Enterobacter 11.3 Pseudomonas 8.9
Paenibacillus 6.3 Paenibacillus 8.7
Pseudomonas 4.9 Lysinibacillus 8.3
Bacillus 1.7 Bacillus 3.2

图4

花针期相对丰度差异显著微生物属"

图5

不同样品组花生根系内生菌LEfSe分析进化分支图 样品编号同表1。"

图6

不同处理下根系内生菌共发生网络图 A: 施钙样品组根系内生菌关联互作网络图; B: 不施钙样品组根系内生菌关联互作网络图。"

[1] Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan H, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan S A, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor P B, Pan R L, Paterson A H, Wang X, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019,51:865-876.
doi: 10.1038/s41588-019-0402-2 pmid: 31043757
[2] 刘鹏, 田颖哲, 钟永嘉, 廖红. 酸性土壤上花生高效根瘤菌的分离及应用. 中国农业科学, 2019,52:3393-3403.
Liu P, Tian Y Z, Zhong Y J, Liao H. Isolation and application of effective Rhizobium strains in peanut on acidic soils. Sci Agric Sin, 2019,52:3393-3403 (in Chinese with English abstract).
[3] Li Y, Meng J, Yang S, Guo F, Zhang J, Geng Y, Cui L, Wan S, Li X. Transcriptome analysis of calcium- and hormone-related gene expressions during different stages of peanut pod development. Front Plant Sci, 2017,8:1241.
pmid: 28769950
[4] 王飞, 王建国, 李林, 刘登望, 万书波, 张昊. 施钙与覆膜栽培对缺钙红壤花生Mg、Fe、Zn吸收、积累及分配的影响. 核农学报, 2019,33:2261-2270.
Wang F, Wang J G, Li L, Liu D W, Wan S B, Zhang H. Effects of calcium application and film mulching on the absorption, accumulation and distribution of Mg, Fe, Zn, in calcium-deficient red soil peanuts. J Nuclear Agric Sci, 2019,33:2261-2270 (in Chinese with English abstract).
[5] 张佳蕾, 郭峰, 孟静静, 杨莎, 耿耘, 杨佃卿, 李元高, 张文生, 李新国, 万书波. 钙肥对旱地花生生育后期生理特性和产量的影响. 中国油料作物学报, 2016,38:321-327.
Zhang J L, Guo F, Meng J J, Yang S, Geng Y, Yang D Q, Li Y G, Zhang W S, Li X G, Wan S B. Effects of calcium fertilizer on physiological characteristics at late growth stage and pod yield of peanut on dryland. Chin J Oil Crop Sci, 2016,38:321-327 (in Chinese with English abstract).
[6] 李东霞, 符海泉, 杨伟波, 徐中亮. 不同钙处理对2份海南花生种质资源农艺性状和防御酶系统的影响. 江苏农业科学, 2019,47(10):117-121.
Li D X, Fu H Q, Yang W B, Xu Z L. Effects of different calcium treatments on agronomic characters and defense enzyme system of 2 peanut germplasm resources from Hainan. Jiangsu Agric Sci, 2019,47(10):117-121 (in Chinese with English abstract).
[7] Jiang J, Li J, Dong Y. Effect of calcium nutrition on resistance of tomato against bacterial wilt induced by Ralstonia solanacearum. Eur J Plant Pathol, 2013,136:547-555.
[8] Hosseini S A, Rethore E, Pluchon S, Ali N, Billiot B, Yvin J C. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. Int J Mol Sci, 2019,20:3777.
[9] Moeder W, Phan V, Yoshioka K. Ca2+ to the rescue-Ca2+ channels and signaling in plant immunity. Plant Sci, 2019,279:19-26.
doi: 10.1016/j.plantsci.2018.04.012 pmid: 30709488
[10] Zipfel C, Oldroyd G E. Plant signalling in symbiosis and imm- unity. Nature, 2017,543:328-336.
doi: 10.1038/nature22009 pmid: 28300100
[11] 王芳, 李振轮, 陈艳丽, 杨水英, 徐义. 钙抑制植物病害作用及机制的研究进展. 生物技术通报, 2017,33(2):1-7.
Wang F, Li Z L, Chen Y L, Yang S Y, Xu Y. Recent advances on inhibition mechanisms of calcium on plant diseases. Biotechnol Bull, 2017,33(2):1-7 (in Chinese with English abstract).
[12] 姜焕焕, 王通, 陈娜, 禹山林, 迟晓元, 王冕, 祁佩时. 根际促生菌提高植物抗盐碱性的研究进展. 生物技术通报, 2019,35(10):189-197.
Jiang H H, Wang T, Chen N, Yu S L, Chi X Y, Wang M, Qi P S. Research progress in PGPR improving plant’s resistance to salt and alkali. Biotechnol Bull, 2019,35(10):189-197 (in Chinese with English abstract).
[13] 吴晓青, 周方园, 张新建. 微生物组学对植物病害微生物防治研究的启示. 微生物学报, 2017,57:867-875.
doi: 10.13343/j.cnki.wsxb.20170073
Wu X Q, Zhou F Y, Zhang X J. The enlightenment of microbiome to plant disease control. Acta Microbiol Sin, 2017,57:867-875 (in Chinese with English abstract).
[14] Berendsen R L, Vismans G, Yu K, Song Y, de Jonge R, Burgman W P, Burmolle M, Herschend J, Bakker P, Pieterse C. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J, 2018,12:1496-1507.
doi: 10.1038/s41396-018-0093-1 pmid: 29520025
[15] 韩丽珍, 刘畅, 周静. 接种促生菌对花生根际土壤微生物及营养元素的影响. 基因组学与应用生物学, 2019,38:3065-3073.
Han L Z, Liu C, Zhou J. Effects of inoculation with growth-promoting bacteria on peanut rhizosphere soil microorganism and nutrient elements. Genomics Appl Biol, 2019,38:3065-3073 (in Chinese with English abstract).
[16] Yuan J, Zhao J, Wen T, Zhao M, Li R, Goossens P, Huang Q, Bai Y, Vivanco J M, Kowalchuk G A, Berendsen R L, Shen Q. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018,6:156.
doi: 10.1186/s40168-018-0537-x pmid: 30208962
[17] Molina-Romero D, Baez A, Quintero-Hernandez V, Castaneda-Lucio M, Fuentes-Ramirez L E, Bustillos-Cristales M, Rodriguez-Andrade O, Morales-Garcia Y E, Munive A, Munoz-Rojas J. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One, 2017,12:e187913.
[18] Ibáñez F, Angelini J, Taurian T, Tonelli M L, Fabra A. Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol, 2009,32:49-55.
doi: 10.1016/j.syapm.2008.10.001 pmid: 19054642
[19] Sharma S, Chen C, Navathe S, Chand R, Pandey S P. A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Sci Rep, 2019,9:4054.
doi: 10.1038/s41598-019-40930-x pmid: 30858512
[20] Gong A, Dong F, Hu M, Kong X, Wei F, Gong S, Zhang Y, Zhang J, Wu A, Liao Y. Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage. Food Control, 2019,106:106718.
doi: 10.1016/j.foodcont.2019.106718
[21] Yang X, Zhang Q, Chen Z Y, Liu H, Li P. Investigation of Pseudomonas fluorescens strain 3JW1 on preventing and reducing aflatoxin contaminations in peanuts. PLoS One, 2017,12:e178810.
[22] Wang M Q, Wang Z, Yu L N, Zhang C S, Bi J, Sun J. Pseudomonas qingdaonensis sp. nov., an aflatoxin-degrading bacterium, isolated from peanut rhizospheric soil. Arch Microbiol, 2019,201:673-678.
pmid: 30798341
[23] Wang K, Yan P S, Ding Q L, Wu Q X, Wang Z B, Peng J. Diversity of culturable root-associated/endophytic bacteria and their chitinolytic and aflatoxin inhibition activity of peanut plant in China. World J Microbiol Biotechnol, 2013,29:1-10.
doi: 10.1007/s11274-012-1135-x pmid: 23108663
[24] Haggag W M, Timmusk S. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol, 2008,104:961-969.
doi: 10.1111/j.1365-2672.2007.03611.x pmid: 18005030
[25] 魏兰芳, 周丽洪, 姬广海, 王永吉, 汪绍雪. Lysobacter antibioticus 13-1菌株抗菌物质鉴定及对水稻白叶枯病的防治效果. 微生物学通报, 2014,41:274-280.
Wei L F, Zhou L H, Ji G H, Wang Y J, Wang S X. Control of rice bacterial leaf blight by antibacterial substances from Lysobacter antibioticus strain 13-1. Microbiol China, 2014,41:274-280 (in Chinese with English abstract).
[26] 雒晓芳, 陈俊楠, 田丹妮, 汪如婷, 马麟龙, 莫芳芳. 白色类诺卡氏菌的分离鉴定及其抗菌活性初探. 中国酿造, 2015,34(10):58-61.
doi: 10.11882/j.issn.0254-5071.2015.10.013
Luo X F, Chen J L, Tian D N, Wang R T, Ma L L, Mo F F. Separation and identification of Nocardioides albus and preliminary research on its antibacterial activity. China Brew, 2015,34(10):58-61 (in Chinese with English abstract).
[27] 云天艳, 冯仁军, 陈宇丰, 周登博, 高祝芬, 起登凤, 张银东, 张锡炎. 木薯根际放线菌的分离鉴定及其抑菌活性分析. 江苏农业科学, 2016,44(4):166-171.
Yun T Y, Feng R J, Chen Y F, Zhou D B, Gao Z F, Qi D F, Zhang Y D, Zhang X Y. Isolation and identification of cassava rhizosphere actinomycetes and analysis of its antibacterial activity. Jiangsu Agric Sci, 2016,44(4):166-171 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!