欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1941-1952.doi: 10.3724/SP.J.1006.2021.04227

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

半夏PtPAL基因的克隆、表达与酶动力学分析

何潇1,2(), 刘兴3, 辛正琦1,2, 谢海艳1,2, 辛余凤1,2, 吴能表1,2,*()   

  1. 1西南大学生命科学学院, 重庆 400715
    2三峡库区生态环境教育部重点实验室, 重庆 400715
    3重庆市大足中学, 重庆 402360
  • 收稿日期:2020-10-14 接受日期:2021-03-19 出版日期:2021-10-12 网络出版日期:2021-04-01
  • 通讯作者: 吴能表
  • 作者简介:E-mail: 992651097@qq.com
  • 基金资助:
    国家自然科学基金项目(30500041)

Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate

HE Xiao1,2(), LIU Xing3, XIN Zheng-Qi1,2, XIE Hai-Yan1,2, XIN Yu-Feng1,2, WU Neng-Biao1,2,*()   

  1. 1School of Life Science, Southwest University, Chongqing 400715, China
    2Key Laboratory of Eco-environments in Three Gorges Region, Ministry of Education, Chongqing 400715, China
    3Chongqing Dazu Middle School, Chongqing 402360, China
  • Received:2020-10-14 Accepted:2021-03-19 Published:2021-10-12 Published online:2021-04-01
  • Contact: WU Neng-Biao
  • Supported by:
    National Natural Science Foundation of China(30500041)

摘要:

本研究以半夏为研究对象, 基于其转录组数据克隆获得1个苯丙氨酸解氨酶基因, 命名为PtPAL, 通过DNAMAN、MEGA等生物信息学软件进行序列结构与系统进化分析表明, 该基因核酸序列长度为2289 bp, 编码762个氨基酸, 终止密码子为TAA, PtPAL与单子叶植物百合PAL相似度达78%, 具有PAL-HAL、PLN02457、phe_am_lyase、Lyase_aromatic及HutH结构域, 属于苯丙氨酸解氨酶家族成员(Lyase_I_like Superfamily)。半夏PtPAL与单子叶植物百合、菠萝和油棕亲缘关系较近, 归于单子叶植物。采用实时荧光定量PCR分析PtPAL在不同组织间的表达情况表明, PtPAL基因在叶中表达量最高, 其次是块茎和根, 花中表达量最低。通过对半夏PtPAL基因进行功能表达分析发现, PtPAL重组蛋白可以高效催化L-Phe生成t-CA, 且催化反应最适pH与温度分别为9.0、70℃; PtPAL的KmVmaxKcatKcat/Km分别为0.89 mmol L-1、63.96 nKat mg-1、6.56 s-1和7.37×103 s-1 M-1。进一步探究金属离子对PtPAL酶活性的影响表明, Ba2+显著增强了PtPAL酶活性, Mn2+、Co2+、Cu2+及Zn2+抑制了PtPAL酶活性。本研究为进一步研究PtPAL的功能特点及半夏苯丙胺类生物碱代谢途径奠定基础。

关键词: 半夏, 麻黄碱, 苯丙氨酸解氨酶, 基因克隆, 表达分析, 酶动力学分析

Abstract:

In this study, based on the transcriptome data, a phenylalanine ammonia lyase gene was cloned and named PtPAL using Pinellia ternate as the experimental material. The analysis of sequence structure and systematic evolution revealed that the length of the gene was 2289 bp, encoding 762 amino acids, and the termination codon was TAA. PtPAL was the similarity of 78% compared with monocot Lilium regale PAL, with PAL-HAL, PLN02457, phe_am_lyase, Lyase_aromatic, and HutH domains that belonging to the Lyase_I_like superfamily. Phylogenetic tree analysis showed that PtPAL was closely related to the monocotyledon Lilium regale, Ananas comosusm, and Elaeis guineensis, and thus belonging to Moncotyledons. Real-time fluorescent qPCR indicated that the relative expression level of PtPAL gene was the highest in leaves, followed by tubers and roots, and the lowest in flowers. The functional expression analysis of PtPAL gene revealed that the PtPAL recombinant protein could efficiently catalyze L-Phe to t-CA, and the optimal pH and temperature of the reaction were 9.0℃ and 70℃, respectively. Km, Vmax, Kcat, and Kcat/Km of PtPAL were 0.89 mmol L -1, 63.96 nKat mg-1, 6.56 s-1, and 7.37×103 s-1 M-1. Further exploration of the effect of metal ions on PtPAL enzyme activity showed that Ba2+ could significantly enhance PtPAL enzyme activity, and Mn2+, Co2+, Cu2+, and Zn2+ inhibit the activity of PtPAL enzyme. This study lays the foundation for further research of the functional characteristics of PtPAL and the metabolic pathways of amphetamine alkaloids in Pinellia ternata.

Key words: Pinellia ternate, ephedrine, phenylalanine ammonia-lyase, gene cloning, expression analysis, enzyme kinetics analysis

表1

本研究所用引物"

引物用途
Primer function
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
基因克隆
Gene cloning
PtPAL-F
PtPAL-R
CACCTAAACCTTCTTCCGCAG
GATCTTACTTGTTACTGGTTCCAAT
荧光定量PCR
Fluorescence quantitative PCR
PtPAL-qF
PtPAL-qR
PtGAPDH-qF
PtGAPDH-qR
CCAACATCCTGGCTCTGCTCTC
GTCCTGCTTCGGCTTCGTCA
TCGTCTTGAGAAATCGGCGAC
GTCAAAGATGCTCGACCGCT
原核表达载体构建
Construction of prokaryotic expression vector
PtPAL-Hind III-F
PtPAL-Xho I-R
CGCAAGCTTTTATGGCGGCCAAGTCGAACGGTCT CGCCTCGAGTTACTGGTTCCAATAACCCCTT

图1

半夏PtPAL 基因全长CDS核酸及氨基酸序列 编码区核酸序列和翻译的氨基酸序列用大写字母表示。终止密码子用*表示, 起始密码子和终止密码子用横线表示。"

图2

不同植物PAL氨基酸序列多重比对 一致氨基酸残基用白色字体黑色背景表示, 保守氨基酸残基用黑色字体红色背景表示。保守的Ala-Ser-Gly催化三联体用表示实心三角, 其他保守活性位点用空心三角表示, 保守活性基序用红色方框表示。AtPAL: 拟南芥(NP_187645.1); VvPAL: 葡萄(RVW44079.1); LrPAL: 百合(ASV46344.1); GbPAL: 银杏(ABU49842.1); EaPAL: 问荆(AAW80639.1); PaPAL: 背苔(AIU99853.1)。"

图3

半夏PtPAL和其他植物PAL系统进化树 各节点处数值表示Bootstrap值百分比(重复1000次)。半夏PtPAL用红色点表示。"

图4

PtPAL蛋白结构预测 A: 单体; B: 同源四聚体。MIO: 3,5-二氢-5-亚甲基-4H-咪唑-4-酮。"

图5

不同组织中半夏PtPAL基因表达分析 不同小写字母表示不同组织间在0.05水平差异显著。"

图6

PtPAL重组蛋白时间梯度诱导表达和融合His标签PtPAL重组蛋白纯化 M为蛋白marker。A: PtPAL重组蛋白时间梯度诱导表达; B: 融合His标签PtPAL重组蛋白纯化。"

图7

PtPAL重组蛋白功能鉴定 蓝色、红色和黑色峰图分别表示反式肉桂酸标品、反应样品、反应对照样品。"

图8

PtPAL催化反应最适pH和温度 A: 不同pH下PtPAL催化活性测定; B: 不同温度下PtPAL催化活性测定。误差线表示生物学重复的标准误差(n = 3)。"

图9

PtPAL米曼氏动力学曲线 误差线表示生物学重复的标准误差(n = 3)。"

表2

不同植物PAL酶动力学参数比较"


Enzyme
温度
Temperature
(℃)
米氏常数
Km
(mmol L-1)
最大酶促反应速率
Vmax
(nkat mg-1)
催化常数
Kcat
(s-1)
催化效率
Kcat/Km
(s-1 M-1)
参考文献
References
PtPAL 70 0.89 63.96 6.56 7.37×103 本研究 This study
37 0.80 37.67 3.75 4.69×103
EsPAL1 37 0.144 7.45×10-3 0.588 3.87×103 Taketo et al. (2008) [20]
EsPAL2 37 0.152 5.77×10-3 0.457 3.18×103
BoPAL1 50 1.01 10.11 1.0 ×104 Hsieh et al. (2011) [21]
BoPAL2 50 0.33 16.04 4.86×104
CdPAL 55 0.101 3.36 3.32×103 Hu et al. (2011) [22]
RgPAL 50 1.3 25×103 19.20 Zhu et al. (2013) [23]
RcPAL 45 7.90 52.31 6.62 ×103 Ma et al. (2013) [24]

图10

金属离子对PtPAL重组蛋白活性的影响 **表示在0.01水平差异显著。"

[1] 刘永红, 郭建宏, 刘文婷, 梁宗锁. 药用植物半夏生物碱类成分研究进展. 西北农林科技大学学报(自然科学版), 2015, 43(9):171-177.
Liu Y H, Guo J H, Liu W T, Liang Z S. Research progress on alkaloids from Pinellia ternata. J Northwest A&F Univ(Nat Sci Edn), 2015, 43(9):171-177 (in Chinese with English abstract).
[2] 郑萍, 戴贵东, 李汉青. 麻黄碱及伪麻黄碱药理作用研究进展. 宁夏医学杂志, 2002, 24(2):126-127.
Zheng P, Dai G D, Li H Q. Research progress on the pharmacological effects of ephedrine and pseudoephedrine. Ningxia Med J, 2002, 24(2):126-127 (in Chinese).
[3] 高晔珩, 党力纳. 麻黄研究进展. 陕西中医学院学报, 2003, (6):60-61.
Gao Y H, Dang L N. Research progress of Ephedra. J Shaanxi Coll Trad Chin Med, 2003, (6):60-61 (in Chinese).
[4] 杨顺楷, 杨亚力, 杨维力. 苯丙氨酸解氨酶(PAL, EC 4.3.1.5)反应机理研究新进展. 生物加工过程, 2004, 2(4):1-5.
Yang S K, Yang Y L, Yang W L. Recent advances in the research of mechanism of the phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) reaction. Chin J Bioproc Eng, 2004, 2(4):1-5 (in Chinese with English abstract).
[5] 刘千子, 宋文琦, 张世华, 张雪梅, 程卓鑫. 菘蓝中苯丙氨酸解氨酶家族基因的鉴定及分析. 中国校医, 2019, 33(6):396.
Liu Q Z, Song W Q, Zhang S H, Zhang X M, Cheng Z X. Identification and analysis of phenylalanine ammonia-lyase family genes in Iisatis indigotica Fortune. Chin J School Doctor, 2019, 33(6):396 (in Chinese with English abstract).
[6] Appert C, Logemann E, Hahlbrock K, Schmid J, Amrhein N. Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym). FEBS J, 2010, 225:491-499.
[7] Shi R, Shuford C M, Wang J P, Sun Y H, Yang Z C, Chen H C, Anukit S T, Li Q Z, Liu J, Muddiman D C, Sederoff R R, Chiang V L. Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta, 2013, 238:487-497.
doi: 10.1007/s00425-013-1905-1
[8] Song J, Wang Z Z. Molecular cloning expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep, 2009, 36:939-952.
doi: 10.1007/s11033-008-9266-8 pmid: 18454352
[9] Rosler J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol, 1997, 113:175-179.
doi: 10.1104/pp.113.1.175
[10] Yu H N, Liu X Y, Gao S, Han X J, Cheng A X, Lou H X. Molecular cloning and functional characterization of a phenylalanine ammonia-lyase from liverwort Plagiochasma appendiculatum. Plant Cell Tissue Organ Cult, 2014, 117:265-277.
doi: 10.1007/s11240-014-0438-z
[11] 王燕, 刘卫红, 杜何为, 许峰, 程水源. 底物、末端产物对离体银杏叶苯丙氨酸解氨酶活性的影响. 果树学报, 2004, 21:443-446.
Wang Y, Liu W H, Du H W, Xu F, Cheng S Y. Effects of substrate and terminal products on the phenylalanine ammonia-lyse (PAL) activities in in vitro leaves of Ginkgo biloba. J Fruit Sci, 2004, 21:443-446 (in Chinese with English abstract).
[12] 江力, 袁怀波, 周强, 江汉湖. 底物和产物对鲜切山药苯丙氨酸解氨酶活性的影响. 食品科学, 2007, 28(10):35-37.
Jiang L, Yuan H P, Zhou Q, Jiang H H. Effects of substrate and products on activity of phenylalanine ammonia-lyase (PAL) in fresh-cut Dioscorea batatas. Food Sci, 2007, 28(10):35-37 (in Chinese with English abstract).
[13] 贺字典, 高增贵, 庄敬华, 陈捷, 郑俊强, 唐树戈. 玉米丝黑穗病菌对寄主防御相关酶活性的影响. 玉米科学, 2006, 14(2):150-151.
He Z D, Gao Z G, Zhuang J H, Chen J, Zheng J Q, Tang S G. Effect of maize head smut pathology (Sphacelotheca reiliana) on the major defensive enzymes of Host. J Maize Sci, 2006, 14(2):150-151 (in Chinese with English abstract).
[14] 刘佳. 美洲南瓜苯丙氨酸解氨酶(PAL)基因克隆、表达分析及品种抗灰霉病研究. 甘肃农业大学博士学位论文, 甘肃兰州, 2013.
Liu J. Cloning and Expression Analysis of Phenylalanine Ammonialyase gene (PAL) from Cucurbita pepo and the Study on Varieties Resistance to Botrytis Cinerea. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2013 (in Chinese with English abstract).
[15] Muñoz-Espinoza V A, Lopez-Climent M F, Casaretto J A, Gomez-Cadenas A. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. Front Plant Sci, 2015, 6:997.
doi: 10.3389/fpls.2015.00997 pmid: 26635826
[16] Ma R F, Liu Q Z, Xiao Y, Zhang L, Li Q, Yin J, Chen W S. The phenylalanine ammonia-lyase gene family in Iisatis indigotica Fortune.: molecular cloning, characterization, and expression analysis. Chin J Nat Med, 2016, 14:801-812.
[17] 罗才林, 李林, 陈立, 邓琴, 张俊, 马璇, 徐德林, 钱刚. 白及苯丙氨酸解氨酶基因的克隆、序列特征及激素响应表达分析. 中草药, 2019, 50:694-701.
Luo C L, Li L, Chen L, Deng Q, Zhang J, Ma X, Xu D L, Qian G. Cloning, sequence characterization, expression profiling of hormones response of phenylalanine ammonia-lyase gene in Bletilla striata. Chin Trad Herbal Drugs, 2019, 50:694-701 (in Chinese with English abstract).
[18] Rother D, Poppe L, Morlock G, Viergutz S, Retey J. An active site homology model of phenylalanine ammonia-lyase from P. crispum. Eur J Biochem, 2002, 269:3065-3075.
doi: 10.1046/j.1432-1033.2002.02984.x
[19] Ritter H. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell Online, 2004, 16:3426-3436.
doi: 10.1105/tpc.104.025288
[20] Okada T, Mikage M, Sekita S. Molecular characterization of the phenylalanine ammonia-lyase from Ephedra sinica. Biol Pharm Bull, 2008, 31:2194-2199.
doi: 10.1248/bpb.31.2194
[21] Hsieh L S, Hsieh Y L, Yeh C S, Cheng C Y, Yang C C, Lee P D. Molecular characterization of a phenylalanine ammonia-lyase gene (BoPAL1) from Bambusa oldhamii. Mol Biol Rep, 2011, 38:283-290.
doi: 10.1007/s11033-010-0106-2
[22] Hu G S, Jia J M, Hur Y J, Chung Y S, Lee J H, Yun D J, Chung W S, Yi G H, Kim T H, Kim D H. Molecular characterization of phenylalanine ammonia-lyase gene from Cistanche deserticola. Mol Biol Rep, 2011, 38:3741-3750.
doi: 10.1007/s11033-010-0489-0
[23] Zhu L, Cui W, Fang Y, Liu Y, Gao X, Zhou Z. Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis. Biotechnol Lett, 2013, 35:751-756.
doi: 10.1007/s10529-013-1140-7
[24] Ma W L, Wu M, Wu Y, Ren Z, Zhong Y. Cloning and characterization of a phenylalanine ammonia-lyase gene from Rhus chinensis. Plant Cell Rep, 2013, 32:1179-1190.
doi: 10.1007/s00299-013-1413-6
[25] 周修任. 优质中草药——半夏的人工栽培技术与市场前景. 科学种养, 2020, (8):56-59.
Zhou X R. High-quality Chinese herbal medicine—Pinellia ternate’s artificial cultivation technology and market prospects. Sci Plant Breed, 2020, (8):56-59 (in Chinese).
[26] 杜欣谊. 苯丙氨酸解氨酶的研究进展. 现代化农业, 2016, (7):24-26.
Du X Y. Research progress of phenylalanine ammonia lyase. Modern Agric, 2016, (7):24-26 (in Chinese).
[27] Chen M J, Vijaykumar V, Lu B W, Xia B, Li N. Cis- and trans-cinnamic acids have different effects on the catalytic properties of Arabidopsis phenylalanine ammonia lyases PAL1, PAL2 and PAL4. J Integr Plant Biol, 2005, 47:67-75.
doi: 10.1111/jipb.2005.47.issue-1
[28] 欧阳光察, 应初衍, 沃绍根, 薛应龙. 植物苯丙氨酸解氨酶的研究: VI. 水稻、小麦PAL的纯化及基本特性. 植物生理学报, 1985, 11:204-214.
Ou-Yang G C, Ying C Y, Wo S G, Xue Y L. Studies on plant phenylalanine ammonia-lyase (PAL): VI. Purification and some properties of PAL from etiolated seedings of rice (Oryza sativa) and wheat(Triticum aestivum). Physiol Mol Biol Pants, 1985, 11:204-214 (in Chinese with English abstract).
[29] 卢涛, 赵德立, 夏凯, 杨亚力, 杨顺楷, 刘成君. 红酵母苯丙氨酸解氨酶的分离纯化及性质研究. 四川大学学报(自然科学版), 2004, 41:865-868.
Lu T, Zhao D L, Xia K, Yang Y L, Yang S K, Liu C J. Purification and properties of phenylalanine ammonia-lyase from Rhodotorula sp. A1401. J Sichuan Univ (Nat Sci Edn), 2004, 41:865-868 (in Chinese with English abstract).
[30] 田晓明. 油茶PAL基因的全长克隆及其在原核和真核生物中的表达. 中南林业科技大学硕士学位论文, 湖南长沙, 2010.
Tian X M. Phenylalanine Ammonia-lyase Gene from Camellia oleifera Full-length Gene and Expression in Prokaryotic and Eukaryotic. MS Thesis of Central South University of Forestry & Technology, Changsha, Hunan, China, 2010 (in Chinese with English abstract).
[31] Hu Y S, Zhang L, Di P, Chen W S. Cloning and induction of phenylalanine ammonia-lyase gene fromSalvia miltiorrhiza and its effect on hydrophilic phenolic acids levels. Chin J Nat Med, 2009, 7:449-457.
doi: 10.3724/SP.J.1009.2009.00449
[32] 刘俊频, 李胜立, 袁元, 郑玲辉, 全雪丽, 吴松权. 膜荚黄芪3个苯丙氨酸解氨酶基因的克隆与表达分析. 中草药, 2019, 50:1669-1675.
Liu J P, Li S L, Yuan Y, Zheng L H, Quan X L, Wu S Q. Cloning and expression of three PAL genes in Astragalus membranaceus. Chin Trad Herbal Drugs, 2019, 50:1669-1675 (in Chinese with English abstract).
[33] Lee B K, Park M R, Srinivas B, Chun J C, Kwon I S, Chung M, Yoo N H. Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa. Mol Cell, 2003, 16:34-39.
[34] Zhu Q, Dabi T, Beeche A, Yamamoto R, Lawton M A, Lamb C. Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol Biol, 1995, 29:535-550.
pmid: 8534851
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[5] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[6] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[7] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[8] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[11] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[12] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[13] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[14] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[15] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!