作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1927-1940.doi: 10.3724/SP.J.1006.2021.03064
宋凝曦1,2(), 李霞1,2,3,*(), 王净1,2, 吴博晗1,4, 曹悦1,5, 杨杰1,3, 谢寅峰2
SONG Ni-Xi1,2(), LI Xia1,2,3,*(), WANG Jin1,2, WU Bo-Han1,4, CAO Yue1,5, YANG Jie1,3, XIE Yin-Feng2
摘要:
为揭示可变剪接机制参与植物耐旱性的内在机制, 以高表达转玉米C4型磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPC)基因(C4-PEPC)水稻(PC)和受体“Kitaake” (WT)为材料, 通过盆栽和水培试验, 研究外施可变剪接抑制剂大环内酯类(pladienolide B, PB)联合干旱处理下, 功能叶片的光合参数、总可溶性糖及其组分、主要抗氧化酶活性以及抗氧化物质含量、Ca2+、NO、H2O2、ABA含量、与蔗糖非发酵1 (sucrose nonfermenting-1, SNF1)相关蛋白激酶(SNF1-related protein kinase 3s, SnRK3s)以及剪接因子基因表达的变化。结果表明: 在盆栽试验中, 与单独自然干旱处理(drought stress, DS)相比, 在孕穗期外施0.5 µmol L-1 PB联合干旱处理(DS+PB), 显著下降了供试水稻的产量及其构成因子的数值, 其中, 在DS+PB处理下, PC的株高、穗数、每穗实粒重和单株产量均显著高于WT。在水培试验中, 与10% PEG-6000模拟干旱处理(PEG)相比, 外施0.5 µmol L -1 PB和10% PEG-6000模拟干旱处理(PEG+PB), 均显著降低了供试水稻功能叶片的净光合速率(Pn)、相对含水量、总可溶性糖含量、脯氨酸含量、SOD酶活性、POD酶活性、CAT酶活性、PEPC酶活性、糖组分(蔗糖、葡萄糖、果糖含量)、Ca2+、NO和H2O2的含量, 其中, PC中3个糖组分以及钙离子含量始终高于WT。与PEG处理相比, PEG+PB处理也导致水稻叶片内糖信号SnRK2s基因(SAPK8和SAPK9)和3个SnRK1基因表达量下降, 其中PC的SAPK8、SAPK10、OsK1a和OsK24表达均高于WT; 进一步10 mmol L-1 EGTA钙离子螯合剂引入实验证明, 钙离子通过调节剪接因子相关基因的表达参与水稻干旱响应。相关性分析也表明, PC中钙离子含量分别与叶片可溶性蛋白含量、ABA含量以及剪接因子RS33的表达水平呈显著或极显著相关。综上, 可变剪接参与水稻干旱响应, 水稻可通过叶内糖信号SnRK1s和SnRK2s基因以及钙离子, 参与调节剪接因子相关基因的表达, 对水稻耐旱起积极的作用。与WT相比, PC的增益效果更强, 这与其内源高钙离子和糖组分含量密切相关。
[1] |
Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59:1-6.
doi: 10.1007/s11103-005-2159-5 |
[2] | Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci, 2015, 6:84. |
[3] |
Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets: towards successful genetic engineering of drought- tolerant crops. Mol Plant, 2010, 3:469-490.
doi: 10.1093/mp/ssq016 |
[4] |
Li J J, Li Y, Yin Z G, Jiang J H, Zhang M H, Guo X, Ye Z J, Zhao Y, Xiong H Y, Zhang Z Y, Shao Y J, Jiang C H, Zhang H L, An G, Paek N, Ali J, Li Z C. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signaling in rice. Plant Biotechnol J, 2017, 15:183-196.
doi: 10.1111/pbi.2017.15.issue-2 |
[5] |
Valliyodan B, Nguyen H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol, 2006, 9:189-195.
pmid: 16483835 |
[6] |
Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol, 2010, 61:235-261.
doi: 10.1146/annurev-arplant-042809-112206 |
[7] |
Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17:76-80.
pmid: 9920274 |
[8] | 吴琼, 许为钢, 李艳, 齐学礼, 胡琳, 张磊, 韩琳琳. 田间条件下转玉米C4型PEPC基因小麦的光合生理特性. 作物学报, 2010, 37:2046-2052. |
Wu Q, Xu W G, Li Y, Qi X L, Hu L, Zhang L, Han L L. Physiological characteristics of photosynthesis in transgenic wheat with maize C4-PEPC gene under field conditions. Acta Agron Sin, 2010, 37:2046-2052 (in Chinese with English abstract). | |
[9] |
Lian L, Wang X, Zhu Y, He W, Cai Q H, Xie H A, Zhang M Q, Zhang J F. Physiological and photosynthetic characteristics of indica Hang2 expressing the sugarcane PEPC gene. Mol Biol Rep, 2014, 41:2189-2197.
doi: 10.1007/s11033-014-3070-4 |
[10] |
Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Miyao M, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci, 2007, 172:1204-1209.
doi: 10.1016/j.plantsci.2007.02.016 |
[11] | 方立锋, 丁在松, 赵明. 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008, 34:1220-1226. |
Fang L F, Ding Z S, Zhao M. Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008, 34:1220-1226 (in Chinese with English abstract). | |
[12] | 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用. 作物学报, 2011, 37:112-118 |
Zhou B Y, Ding Z S, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice. Acta Agron Sin, 2011, 37:112-118 (in Chinese with English abstract). | |
[13] | 丁在松, 周宝元, 孙雪芳, 赵明. 干旱胁迫下PEPC过表达增强水稻的耐强光能力. 作物学报, 2012, 38:285-292. |
Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress. Acta Agron Sin, 2012, 38:285-292 (in Chinese with English abstract). | |
[14] |
Shen W J, Chen G X, Xu J G, Jiang Y, Liu L, Gao Z P, Ma J, Chen X, Chen T H, Lyu C G. Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Photosynthetica, 2015, 53:436-446.
doi: 10.1007/s11099-015-0111-8 |
[15] |
Qian B, Li X, Liu X L, Wang M. Improved oxidative tolerance in suspension cultured cells of C4-pepc transgenic rice by H2O2 and Ca2+ under PEG-6000. J Integr Plant Biol, 2015, 57:534-549.
doi: 10.1111/jipb.12283 |
[16] | 李霞, 焦德茂, 戴传超. 转PEPC基因水稻对光氧化逆境的响应. 作物学报, 2005, 27:408-413. |
Li X, Jiao D M, Dai C C. Photosynthetic characteristics for rice hybrids with transgenic PEPC parent HPTER-01. Acta Agron Sin, 2005, 27:408-413 (in Chinese with English abstract). | |
[17] |
Ren C G, Li X, Liu X L, Wei X D, Dai C C. Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice. Plant Physiol Biochem, 2014, 74:218-229.
doi: 10.1016/j.plaphy.2013.11.011 |
[18] |
Liu X L, Li X, Zhang C, Dai C C, Zhou J Y, Ren C G, Zhang J F. Phosphoenolpyruvate carboxylase regulation in C4-PEPC expressing transgenic rice during early responses to drought stress. Physiol Plant, 2017, 159:178-200.
doi: 10.1111/ppl.2017.159.issue-2 |
[19] |
Orta D R, Merchant S S, Alric J, Barkan A, Blankenship R E, Bock R, Moore T A. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA, 2015, 112:8529-8536.
doi: 10.1073/pnas.1424031112 |
[20] |
O’Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC recent insights into the physiological function and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011, 436:15-34.
doi: 10.1042/BJ20110078 |
[21] | Li X, Wang C, Ren C G. Effects of butanol neomycin and calcium on the photosynthetic characteristics of pepc transgenic rice. Afr J Biotechnol, 2011, 10:17466-17476. |
[22] |
Chen P, Li X, Huo K, Wei X D, Dai C C. Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors. J Plant Physiol, 2014, 171:458-466.
doi: 10.1016/j.jplph.2013.11.006 |
[23] |
Huo K, Li X, He Y F, Wei X D, Wang C L, Zhao C F. Exogenous ATP enhance signal response of suspension cells of transgenic rice (Oryza sativa L.) expressing maize C4-pepc encoded phosphoenolpyruvate carboxylase under PEG treatment. Plant Growth Regul, 2017, 82:55-67.
doi: 10.1007/s10725-016-0238-z |
[24] | Li X, Wang C. Physiological and metabolic changes of transgenic rice plant with increased activity of phosphonolpyruvate carboxylase during flowering stage. Physiol Plant, 2013, 35:1503-1512. |
[25] |
Zhang C, Li X, He Y F, Zhang J F, Yan T, Liu X L. Physiological investigation of C4 phosphoenolpyruvate carboxylase introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. Plant Physiol Biochem, 2017, 115:328-342.
doi: 10.1016/j.plaphy.2017.03.019 |
[26] | 张金飞, 李霞, 何亚飞, 谢寅峰. 外源葡萄糖增强高表达转玉米C4型PEPC水稻耐旱性的生理机制. 作物学报, 2018, 44:82-94. |
Zhang J F, Li X, He Y F, Xie Y F. Physiological mechanism on drought tolerance enhanced by exogenous glucose in C4-PEPC rice. Acta Agron Sin, 2018, 44:82-94 (in Chinese with English abstract). | |
[27] |
He Y F, Xie Y F, Li X, Yang J. Drought tolerance of transgenic rice overexpressing maize C4-PEPC gene related to increased anthocyanin synthesis regulated by sucrose and calcium. Biol Plant, 2020, 64:136-149.
doi: 10.32615/bp.2020.031 |
[28] | 杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报, 2018, 53:581-593. |
Du K X, Shen W H, Dong A W. Advances in epigenetic regulation of abiotic stress response in plants. Chin Bull Bot, 2018, 53:581-593 (in Chinese with English abstract). | |
[29] |
Syed N H, Kalyna M, Marquez Y, Barta A, Brown J W. Alternative splicing in plants coming of age. Trends Plant Sci, 2012, 17:616-623.
doi: 10.1016/j.tplants.2012.06.001 |
[30] | 宋凝曦, 张晓敬, 陆佳岚, 李霞, 谢寅峰. 可变剪接在植物响应胁迫中的作用. 植物生理学报, 2020, 56:1201-1211. |
Song N X, Zhang X J, Lu J L, Li X, Xie Y F. Function of alternative splicing in plant response to biotic and abiotic stress. Plant Physiol J, 2020, 56:1201-1211 (in Chinese with English abstract). | |
[31] |
Wang P, Xue L, Batelli G, Lee S, Hou Y J, Van Oosten M J, Zhang H, Tao W A, Zhu J K. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci USA, 2013, 110:11205-11210.
doi: 10.1073/pnas.1308974110 |
[32] |
Ling Y, Alshareef S, Butt H, Lozano J, Li L, Galal A A, Moustafa A, Momin A A, Tashkandi M, Richardson D N, Fujii H, Arold S, Rodriguez P L, Duque P, Mahfouz M M. Pre mRNA splicing repression triggers abiotic stress signaling in plants. Plant J, 2017, 89:291-309.
doi: 10.1111/tpj.13383 |
[33] |
Galit L M, Ahuvi Y, Gil A. The alternative role of DNA methylation in splicing regulation. Trends Genet, 2015, 31:274-280.
doi: 10.1016/j.tig.2015.03.002 pmid: 25837375 |
[34] | Yoshida S, Forno D A, Cock J H. Laboratory Manual for Physiological Studies of Rice. Philippines: International Rice Research Institute, 1976. pp 61-64. |
[35] |
Smart R E, Bingham G E. Rapid estimates of relative water content. Plant Physiol, 1974, 53:258-260.
pmid: 16658686 |
[36] |
Somani B L, Khanade J, Sinha R. A modified anthrone sulfuric acid method for the determination of fructose in the presence of certain proteins. Anal Biochem, 1987, 167:327-330.
pmid: 3442328 |
[37] | Ambavaram M M, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun, 2014, 5:93. |
[38] |
Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 1976, 72:248-254.
pmid: 942051 |
[39] |
Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1997, 59:309-314.
doi: 10.1104/pp.59.2.309 |
[40] | Smith F G, Robinson W B, Stotz E. A colorimetric method for the determination of peroxidase in plant material. J Biol Chem, 1949, 79:881-889. |
[41] |
Havir E A, McHale N A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol, 1987, 84:450-455.
pmid: 16665461 |
[42] |
Walter T, John L. A photometric methods for the determination of proline. J Biol Chem, 1955, 215:655-660.
doi: 10.1016/S0021-9258(18)65988-5 |
[43] |
Wang X, Cai J, Jiang D. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J Plant Physiol, 2011, 168:585-593.
doi: 10.1016/j.jplph.2010.09.016 |
[44] |
Doulis A G, Debian N, Kingston-Smith A H, Foyer C H. Differential localization of antioxidants in maize leaves. Plant Physiol, 1997, 114:1031-1037.
pmid: 12223757 |
[45] | Yang C Q, Liu W N, Zhao Z H, Wu H Y. Determination of the content of serum calcium with methylthymol blue as chromogenic reagent. Spectrosc Spectr Anal, 1998, 18:485-487. |
[46] | Murphy M E, Noack E. Nitic oxide assay using hemoglobin method. Methods Enzymol, 1994, 233:240-250. |
[47] |
Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H L, Ali J, Li Z C. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One, 2014, 9:e92913.
doi: 10.1371/journal.pone.0092913 |
[48] | Jung H, Kim J K, Ha S W. Use of animal viral IRES sequence makes multiple truncated transcripts without mediating polycistronic expression in rice. J Korean Soc Biol Chem, 2011, 54:678-684. |
[49] |
Ermakova M, Danila F R, Furbank R T, Caemmerer S. On the road to C4 rice: advances and perspectives. Plant J, 2020, 101:940-950.
doi: 10.1111/tpj.14562 |
[50] | 严婷, 李佳馨, 李霞, 谢寅峰. 转C4型PEPC基因水稻非生物胁迫耐受性研究进展. 淮阴工学院学报, 2019, 28:62-68. |
Yan T, Li J X, Li X, Xie Y F. Research progress on abiotic stress tolerance of transgenic rice with C4-PEPC gene. J Huaiyin Inst Technol, 2019, 28:62-68 (in Chinese with English abstract). | |
[51] | 何亚飞, 李霞, 谢寅峰. 植物中糖信号及其对逆境调控的研究进展. 植物生理学报, 2016, 52:241-249. |
He Y F, Li X, Xie Y F. Research progress in sugar signal and its regulation of stress in plants. Plant Physiol J, 2016, 52:241-249 (in Chinese with English abstract). | |
[52] |
张金飞, 李霞, 谢寅峰. 植物SnRKs家族在胁迫信号通路中的调节作用. 植物学报, 2017, 52:346-357.
doi: 10.11983/CBB16095 |
Zhang J F, Li X, Xie Y F. The function of sucrose nonfermenting-1 related protein kinases in stress signaling. Chin Bull Bot, 2017, 52:346-357 (in Chinese with English abstract). | |
[53] |
Carvalho R F, Szakonyi D, Simpson C G, Barbosa I C R, Browm J W S, Baena-González E, Duque P. The Arabidopsis SR45 splicing factor, a negative regulator of sugar signaling, modulates SNF1-related protein kinase 1 stability. Plant Cell, 2016, 28:1910-1925.
doi: 10.1105/tpc.16.00301 |
[54] | Sah S K, Reddy K R, Li J X. Abscisic acid and abiotic stress tolerance in crop plant. Front Plant Sci, 2016, 7:571. |
[55] | 刘小龙, 李霞, 钱宝云, 唐玉婷. 植物体内钙信号及其在调节干旱胁迫中的作用. 西北植物学报, 2014, 34:1927-1936. |
Liu X L, Li X, Qian B Y, Tang Y T. Ca2+ signal transduction and its regulation role under drought stress in plant. Bot Boreali-Occident Sin, 2014, 34:1927-1936 (in Chinese with English abstract). | |
[56] | 刘小龙, 李霞, 钱宝云. 外源Ca2+对PEG处理下转C4型PEPC基因水稻光合生理的调节. 植物学报, 2015, 50:206-216. |
Liu X L, Li X, Qian B Y. Photosynthetic and physiological regulation of C4 phosphoenolpyruvate carboxylase transgenic rice (Oryza sativa) by exogenous Ca2+ under polyethylene glycol stress. Chin Bull Bot, 2015, 50:206-216 (in Chinese with English abstract). | |
[57] |
Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14:165-183.
doi: 10.1105/tpc.010278 |
[58] |
Palusa S G, Ali G S, Reddy A S. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine rich proteins: regulation by hormones and stresses. Plant J, 2007, 49:1091-1107.
doi: 10.1111/tpj.2007.49.issue-6 |
[59] |
Wang Y, Zhou D, Wang S, Yang L. Large scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana. Genet Mol Res, 2015, 14:7793-7800.
doi: 10.4238/2015.July.14.5 pmid: 26214460 |
[60] |
Golisz A, Sikorski P J, Kruszka K, Kufel J. Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation. Nucleic Acids Res, 2013, 41:6232-6249.
doi: 10.1093/nar/gkt296 pmid: 23620288 |
[61] |
Zhang P, Deng H, Xiao F, Liu Y S. Alterations of alternative splicing patterns of Ser/Arg-Rich (SR) genes in response to hormones and stresses treatments in different ecotypes of rice. J Integr Agric, 2013, 12:737-748.
doi: 10.1016/S2095-3119(13)60260-9 |
[62] |
Cruz T M, Carvalho R F, Richardson D N, Duque P. Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression. Int J Mol Sci, 2014, 15:17541-17564.
doi: 10.3390/ijms151017541 |
[63] |
Barta A, Kalyna M, Reddy A S. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. Plant Cell, 2010, 22:2926-2929.
doi: 10.1105/tpc.110.078352 |
[64] |
Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over expressing C4-PEPC. Biochimie, 2002, 84:1127-1135.
pmid: 12595141 |
[65] |
Marsh J T, Sullivan S, Hartwell J, Nimmo H G. Structure and expression of phosphoenolpyruvate carboxylase kinase genes in Solanaceae. A novel gene exhibits alternative splicing. Plant Physiol, 2003, 133:2021-2028.
doi: 10.1104/pp.103.030775 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[7] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[8] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[9] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[10] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[11] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[12] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[13] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[14] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[15] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
|