欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1927-1940.doi: 10.3724/SP.J.1006.2021.03064

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大环内酯类和高表达玉米C4-PEPC基因对水稻耐旱性的影响

宋凝曦1,2(), 李霞1,2,3,*(), 王净1,2, 吴博晗1,4, 曹悦1,5, 杨杰1,3, 谢寅峰2   

  1. 1江苏省农业科学院粮食作物研究所 / 江苏省优质水稻工程技术研究中心 / 国家水稻改良中心南京分中心, 江苏南京 210014
    2南京林业大学生物与环境学院, 江苏南京 210037
    3江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
    4江苏大学环境与安全工程学院, 江苏镇江 212013
    5南京农业大学生命科学学院, 江苏南京 210095
  • 收稿日期:2020-10-25 接受日期:2021-03-19 出版日期:2021-10-12 网络出版日期:2021-04-08
  • 通讯作者: 李霞
  • 作者简介:E-mail: 362600124@qq.com
  • 基金资助:
    国家自然科学基金项目(31571585);国家重点研发计划项目(2016YFD0300501-03)

Effects on drought tolerance by pladienolide B and rice with high expression of C4-PEPC

SONG Ni-Xi1,2(), LI Xia1,2,3,*(), WANG Jin1,2, WU Bo-Han1,4, CAO Yue1,5, YANG Jie1,3, XIE Yin-Feng2   

  1. 1Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Engineering Technology Research Center, Nanjing Branch of National Center for Rice Improvement, Nanjing 210014, Jiangsu, China
    2College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
    3Collaborative Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou 225009, Jiangsu, China
    4School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    5School of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2020-10-25 Accepted:2021-03-19 Published:2021-10-12 Published online:2021-04-08
  • Contact: LI Xia
  • Supported by:
    National Natural Science Foundation of China(31571585);National Key Research and Development Program of China(2016YFD0300501-03)

摘要:

为揭示可变剪接机制参与植物耐旱性的内在机制, 以高表达转玉米C4型磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPC)基因(C4-PEPC)水稻(PC)和受体“Kitaake” (WT)为材料, 通过盆栽和水培试验, 研究外施可变剪接抑制剂大环内酯类(pladienolide B, PB)联合干旱处理下, 功能叶片的光合参数、总可溶性糖及其组分、主要抗氧化酶活性以及抗氧化物质含量、Ca2+、NO、H2O2、ABA含量、与蔗糖非发酵1 (sucrose nonfermenting-1, SNF1)相关蛋白激酶(SNF1-related protein kinase 3s, SnRK3s)以及剪接因子基因表达的变化。结果表明: 在盆栽试验中, 与单独自然干旱处理(drought stress, DS)相比, 在孕穗期外施0.5 µmol L-1 PB联合干旱处理(DS+PB), 显著下降了供试水稻的产量及其构成因子的数值, 其中, 在DS+PB处理下, PC的株高、穗数、每穗实粒重和单株产量均显著高于WT。在水培试验中, 与10% PEG-6000模拟干旱处理(PEG)相比, 外施0.5 µmol L -1 PB和10% PEG-6000模拟干旱处理(PEG+PB), 均显著降低了供试水稻功能叶片的净光合速率(Pn)、相对含水量、总可溶性糖含量、脯氨酸含量、SOD酶活性、POD酶活性、CAT酶活性、PEPC酶活性、糖组分(蔗糖、葡萄糖、果糖含量)、Ca2+、NO和H2O2的含量, 其中, PC中3个糖组分以及钙离子含量始终高于WT。与PEG处理相比, PEG+PB处理也导致水稻叶片内糖信号SnRK2s基因(SAPK8SAPK9)和3个SnRK1基因表达量下降, 其中PC的SAPK8、SAPK10、OsK1aOsK24表达均高于WT; 进一步10 mmol L-1 EGTA钙离子螯合剂引入实验证明, 钙离子通过调节剪接因子相关基因的表达参与水稻干旱响应。相关性分析也表明, PC中钙离子含量分别与叶片可溶性蛋白含量、ABA含量以及剪接因子RS33的表达水平呈显著或极显著相关。综上, 可变剪接参与水稻干旱响应, 水稻可通过叶内糖信号SnRK1s和SnRK2s基因以及钙离子, 参与调节剪接因子相关基因的表达, 对水稻耐旱起积极的作用。与WT相比, PC的增益效果更强, 这与其内源高钙离子和糖组分含量密切相关。

关键词: 水稻, 可变剪接, 磷酸烯醇式丙酮酸羧化酶, 大环内酯, 干旱

Abstract:

To investigate the intrinsic mechanism of alternative splicing (AS) participated in drought tolerance in plants, the effects of macrolides pladienolide B (PB, one of the AS inhibitors) were studied using the phosphoenolpyruvate carboxylase (C4-PEPC) rice (PC) and “Kitaake” (WT) rice lines in pot experiments and hydroponics experiments, respectively. The changes of photosynthetic parameters, total soluble sugar and sugar components contents, some main antioxidant enzyme activities and antioxidant contents, Ca2+, NO, H2O2, ABA contents, transcript levels of sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs), arginine/serine-rich proteins (SR proteins), and PEPC both in C4 and C3 type of the functional leaves in rice lines were measured. Agronomic traits of the WT and PC were recorded in the mature period. In pot experiment, compared with the natural drought treatment alone, the treatment of 0.5 µmol L-1 PB with drought at booting stage had a significant decline on agronomic traits of the tested rice. Among them, plant height, panicle number per plant, filled grain number per panicle, and grain yield per plant in PC were significantly higher than those of WT. In the hydroponics experiment with 0.5 µmol L -1 PB combined with 10% mmol L-1 polyethylene glycol 6000 (PEG-6000) to simulate drought stress, compared with PEG treatment, net photosynthetic rate, relative water content, total soluble sugar content, proline content, SOD activity, POD activity, CAT activity, and PEPC activity were significantly increased in PC than those of WT. Similarly, the contents of sucrose, glucose, fructose, and Ca2+ of leaves in PC lines were significantly higher than those of WT. It was noteworthy that the relative gene expression levels of C4-PEPE, Osppc2a, SnRK2s (SAPK8 and SAPK9), SnRK1s (OsK1a, OsK24, and OsK35), and SR proteins (SR33, SR40, RS29, RS2Z21, and RS2Z38) under PEG+PB treatment were significantly lower than those under PEG treatment. It was further verified by using 10 mmol L-1 EGTA experiments [Ethylene glycolbis (aminoethylether)-tetra-acetic acid, a chelate solution of calcium ions] that Ca2+ were involved in the drought response by regulating the transcript levels of SR proteins genes in rice. In addition, the Ca2+ content in PC lines was significantly correlated with soluble protein content, ABA content, and RS33 transcript level, respectively. In conclusion, AS participated in drought response by regulating the expression of SR related genes through sugar signal both SnRK1s and SnRK2s, and calcium ion as well, which played a positive role in drought tolerance in rice. Compared with WT, PC had a stronger positive effect, which was closely related to its high endogenous Ca 2+ content and the contents of sucrose, glucose, fructose.

Key words: rice, alternative splicing, phosphate phosphoenolpyruvate carboxylase, macrolides pladienolide B, drought

表1

qRT-PCR的基因和引物"

基因名称
Gene name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
基因登录号
Gene accession number
Act CCCTCAAACATCGGTATGGA TTGATCTTCATGCTGCTTGG Os01g4349863
OsK1a AACCAGAGGTAACAGGCAGG AACCAGAGGTAACAGGCAGG Os05g4433941
OsK24 CGTGTTGGCTTCAGTGAAT CCTTCTCTATCTAAGGGCCG Os08g4349863
OsK35 TTGTGTTGGCTTCAGTGAAA CCTTCGCTGTCTAAGGACTG Os03g4332495
C4-PEPC CCCACTATCCTTCGCAAGAC CTAGCCAGTGTTCTGCATGCCGG E17154
Osppc2a CTGGTTGAGATGGTTTTCGC GGTGTGAATTCAGGCACTTC Os01g55350
SAPK8 ATAGATGATAATGTCCAGCG GTTCCTACAGTGGATTTTGG Os03g0764800
SAPK9 CACAGCAACGCCGTCTCC CACACTTCCACCGCTACCAA Os12g0586100
SAPK10 TGCTGATGTGTGGTCGTGTG TGCTGGTATGGTCGCCTCT Os03g0610900
RS29 GGGATCTTTGATTTGCTGCGA CAATTTATGTGTTCCACGCCG Os04g02870
RS33 ACTCCCGGTAAGCACATGAC GGGGCTAGCATGTTTCACTG Os02g03040
SR40 CAATCTGGGGACTGCTTTC TCCTGCTTGGGCTTTTACT Os12g38430
SR33 ATATTGCCTGCTACCCGAAAG CAGAGCAGCACCCAGTTTATTAC Os07g47630
SCL25 AAAGTGCACTCTGCGAACTCTCT GCGGTTCACTGAAAAGGACAA Os07g43950
SCL26 GAAGAGAAAATGAACCAGACCG AAACCCTAGCGAAAAGGAAATC Os03g24890
SCL30 CACGCTGATATGTGGGTCTCAT CCTCCCAACGGAAATCTCTAAC Os12g38430
SCL57 TCCCACACCGATTTATCTTTTT CATGTTCTTTAGCCTGTCCTGA Os11g47830
RSZ21 ATGGTCATTGACAAGTGTGCG CGATAGATCTAATCCCGCAAGG Os06g08840
RS2Z36 TGTCAAAACAGCCCAAGAAATC CCATCCATCGTACACCAATAGC Os05g02880

表2

孕穗期外施PB联合干旱处理对水稻产量及其构成因子的影响"

性状
Trait
转玉米C4-PEPC水稻 C4-PEPC rice (PC) Kitaake (WT)
CK CK+PB DS DS+PB CK CK+PB DS DS+PB
株高
Plant height (cm)
87.67 a
100.00%
84.32 a 96.18% 79.03 b 90.14% 67.83 c 77.37% 87.38 a 100.00% 85.33 a
97.65%
72.35 bc 82.80% 52.62 d 60.22%
最大分蘖数
The largest tiller number per plant
10.73 b
100.00%
9.79 b
91.24%
8.66 c
80.71%
8.29 c 77.26% 13.97 a 100.00% 12.22 a
87.47%
8.23 c 58.91% 7.19 d
51.47%
每株总穗数
Panicle number per plant
9.33 b
100.00%
9.18 b
98.39%
6.33 c 67.85% 5.74 d 61.52% 11.04 a 100.00% 10.57 ab 95.74% 6.29 c 56.97% 5.33 d
48.28%
穗长
Panicle length (cm)
13.35 a
100.00%
12.47 a 93.41% 11.04 b 82.70% 8.63 d 64.64% 11.67 ab 100.00% 11.40 ab
97.69%
10.75 c 92.12% 7.67 d
65.72%
每穗总粒数
Total grain number per panicle
37.61 a
100.00%
38.47 a 102.29% 33.63 b 89.42% 28.58 c 75.99% 37.33 a 100.00% 35.87 a
96.09%
28.83 c 77.23% 27.33 c 73.21%
每穗实粒数
Filled grain number per panicle
33.48 ab 100.00% 32.87 ab 98.18% 24.58 c 73.42% 19.33 d 57.74% 31.04 b 100.00% 30.12 b
97.04%
21.38 d 68.88% 18.65 d 60.08%
结实率
Gain filling ratio (%)
89.34 a
100.00%
85.44 a 95.63% 80.24 c 89.81% 69.14 e 77.39% 83.24 bc 100.00% 83.97 b 100.88% 74.01 d 88.91% 68.32 e 82.08%
千粒重
1000-grain weight (g)
25.74 a
100.00%
24.87 a 96.62% 23.38 b 90.83% 19.95 c 77.51% 25.30 a 100.00% 23.84 ab 94.23% 20.74 c 81.98% 17.87 d 70.63%
每株叶干重
Leaf weight per plant (g)
3.76 a
100.00%
3.87 a 102.93% 2.53 c 67.29% 2.45 c 65.16% 3.56 b 100.00% 3.47 b
97.47%
2.29 c 64.33% 2.03 d 57.02%
每株茎干重
Stem weight per plant (g)
2.93 a
100.00%
2.85 a 97.27% 1.23 b 41.98% 0.73 c 24.91% 2.59 a 100.00% 2.44 a
94.21%
1.51 b 58.30% 0.81 c 31.27%
每株穗干重
Panicle weight per plant (g)
6.77 a
100.00%
6.59 a 97.34% 4.95 c 73.12% 2.47 e 36.48% 6.19 b 100.00% 5.93 b
95.80%
4.12 d 66.56% 2.14 f 34.57%
总干重
Total dry weight per plant (g)
13.46 a 100.00% 13.31 a 98.89% 8.71 c 64.71% 5.65 d 41.98% 12.34 b 100.00% 11.84 b 95.95% 7.52 c 60.94% 4.98 e 40.36%
单株产量
Yield per plant (g)
4.13 a
100.00%
4.05 a 98.06% 2.83 c 68.52% 2.54 d 61.50% 3.82 b 100.00% 3.71 b
97.12%
2.06 e 53.93% 1.71 f 44.76%

表3

喷施PB联合10% PEG-6000模拟干旱处理对水稻叶片光合参数的变化"

光合参数
Photosynthetic parameters
转玉米C4-PEPC水稻 C4-PEPC rice (PC) Kitaake (WT)
CK PEG PEG+PB CK PEG PEG+PB
净光合速率
Net photosynthetic rate Pn (μmoL CO2 m-2 s-1)
20.14 a 100.00% 16.73 c 83.07% 15.60 d 77.46% 18.22 b 100.00% 13.46 c 73.87% 10.68 f
58.62%
气孔导度
Stomatal conductance Gs (mol m-2 s-1)
0.73 a 100.00% 0.45 b 61.64% 0.46 b 63.01% 0.75 a 100.00% 0.33 c 44.00% 0.31 c
41.33%
胞间CO2浓度
Intercellular CO2 concentration Ci (μmol mol-1)
366.57 a 100.00% 345.18 ab 94.16% 337.18 b
91.98%
368.96 a 100.00% 343.04 b 92.97% 354.09 ab
95.97%
蒸腾速率
Transpiration rate Tr (mol H2O m-2 s-1)
9.06 a 100.00% 6.31 c 69.65% 6.24 c 68.87% 9.46 a 100.00% 7.14 b 75.48% 7.34 b
77.59%
羧化效率
Carboxylation efficiency CE (mol m-2 s-1)
0.063 a 100.00% 0.048 c 76.19% 0.046 c 73.02% 0.051 b 100.00% 0.039 d 76.47% 0.032 e
62.75%

表4

不同处理对水稻叶片相对含水量、渗透调节物质、抗氧化酶活性以及PEPC酶活性的影响"

生理指标
Physiological indexes
转玉米C4-PEPC水稻 C4-PEPC rice (PC) Kitaake (WT)
CK PEG PEG+PB CK PEG PEG+PB
相对含水量
Relative water content (%)
88.43 a
100.00%
78.43 b 88.69% 73.47 c 83.08% 88.96 a
100.00%
69.17 d 77.75% 61.42 e 69.04%
总的可溶性蛋白含量
Total soluble protein content (mg g-1)
14.25 a
100.00%
12.92 b
90.67%
9.92 d
69.61%
14.01 a
100.00%
11.72 c 83.65% 8.02 e
57.24%
总的可溶性糖含量
Total soluble sugar content (mg g-1)
21.23 c
100.00%
28.33 a 133.44% 12.41 e 58.46% 19.02 d
100.00%
23.04 b 121.14% 9.59 f
50.42%
脯氨酸含量
Proline content (mg g-1)
63.38 c
100.00%
75.49 a 119.11% 41.85 d 66.03% 64.15 c
100.00%
68.04 b 106.06% 38.03 e
59.28%
超氧化物歧化酶活性
Superoxide dismutase activity (U g-1)
56.78 b
100.00%
84.54 a 148.89% 33.56 d 59.11% 51.74 c
100.00%
56.53 b 109.26% 29.78 e
57.56%
过氧化物酶活性
Peroxidase activity (U g-1)
65.46 c
100.00%
89.44 a 136.63% 32.73 e 50.01% 59.07 d
100.00%
76.64 b 129.74% 29.53 f
49.99%
过氧化氢酶活性
Catalase activity (U g-1)
176.27 a
100.00%
137.32 c 77.90% 126.27 d 71.63% 160.34 b
100.00%
130.56 d
81.42%
96.11 e
59.94%
抗坏血酸含量
Ascorbic acid content (µg g-1)
11.38 c
100.00%
16.19 a
142.27%
7.07 d
62.13%
12.43 c
100.00%
14.88 b
119.71%
6.72 d
54.06%
谷胱甘肽含量
Glutathione content (µmol L-1)
22.31 a
100.00%
15.52 c
69.57%
11.09 e
49.71%
20.31 b
100.00%
13.21 d
65.04%
10.52 e
51.80%
磷酸烯醇式丙酮酸羧化酶活性
PEPC activity (U mg-1 prot)
60.54 c
100.00%
90.97 a 150.26% 68.32 b 112.85% 20.03 e
100.00%
29.44 d 146.98% 21.14 e 105.54%

表5

不同处理对水稻叶片蔗糖、葡萄糖、果糖、钙离子、NO和H2O2含量的影响"

生理指标
Physiological indexes
转玉米C4-PEPC水稻 C4-PEPC rice (PC) Kitaake (WT)
CK PEG PEG+PB CK PEG PEG+PB
蔗糖含量
Sucrose content (mg g-1)
9.67 c 100.00% 11.92 a
123.27%
5.15 d 53.26% 10.19 b 100.00% 10.09 c 99.02% 4.41 e 43.28%
葡萄糖含量
Glucose content (mg g-1)
8.71 b 100.00% 9.86 a
113.20%
4.34 c
49.83%
9.75 a
100.00%
8.47 b
86.87%
2.69 d 27.59%
果糖含量
Fructose content (mg g-1)
3.21 b 100.00% 2.93 d
91.28%
2.21 e
68.85%
3.61 a
100.00%
3.17 c
87.81%
1.79 f 49.58%
钙离子含量
Ca2+content (mmol g-1)
1.67 c 100.00% 2.07 a
123.95%
0.82 d
49.10%
1.29 b
100.00%
1.69 c 131.01% 0.43 e 33.33%
一氧化氮含量
NO content (µmol g-1)
35.61 a 100.00% 22.05 b
61.92%
18.04 d
50.66%
36.47 a 100.00% 20.34 c 55.77% 17.92 d 49.14%
过氧化氢含量
H2O2 content (µmol g-1)
103.07 b 100.00% 107.47 b
104.27%
82.48 c
80.02%
102.15 b 100.00% 128.96 a 126.25% 84.11 c 82.34%

表6

不同处理对水稻叶片ABA含量、相对含水量、PEPC以及SnRKs相关基因表达量的影响"

测定指标
Measurement index
转玉米C4-PEPC水稻 C4-PEPC rice (PC) Kitaake (WT)
CK PEG PEG+PB PEG+PB+EGTA CK PEG PEG+PB PEG+PB+EGTA
ABA 含量
ABA content (μg g-1)
8.16 d 12.95 a 5.63 e 9.78 b 9.43 c 6.86 b 4.92 f 8.26 d
相对含水量
Relative water content (%)
87.43 a 76.43 b 73.47 c 59.38 e 89.56 a 68.17 d 62.42 e 51.39 f
C4-PEPC相对表达量
Relative expression of C4-PEPC
2.27 d 6.44 a 3.27 b 2.53 c
Osppc2a相对表达量
Relative expression of Osppc2a
0.96 de 1.26 c 0.55 g 1.45 b 1.04 d 1.57 a 0.78 f 1.038 d
SAPK8相对表达量
Relative expression of SAPK8
1.98 e 10.53 a 1.05 c 0.88 d 1.03 g 5.39 b 2.03 f 0.41 h
SAPK9相对表达量
Relative expression of SAPK9
3.09 a 2.84 b 1.54 d 0.68 f 1.04 e 1.87 c 0.97 e 1.77 c
SAPK10相对表达量
Relative expression of SAPK10
0.82 d 3.09 b 2.94 b 0.75 e 1.02 c 5.81 a 0.74 e 0.66 f
OsK1a相对表达量
Relative expression of OsK1a
1.75 d 14.12 a 10.05 b 1.54 e 1.03 g 10.04 b 5.43 c 1.15 f
OsK24相对表达量
Relative expression of OsK24
0.97 e 16.99 c 14.41 d 0.74 g 1.01 e 12.89 a 9.06 b 0.25 f
OsK35相对表达量
Relative expression of OsK35
2.12 g 13.05 a 3.76 f 5.88 d 1.04 h 7.41 b 3.99 e 6.28 c

表7

不同处理对水稻叶片剪接因子相关基因表达的影响"

相对基因的表达
Relative expression level of genes
转玉米C4-PEPC水稻 C4-PEPC rice (PC) Kitaake (WT)
CK PEG PEG+PB PEG+PB+
EGTA
CK PEG PEG+PB PEG+PB+EGTA
SR33 2.12 c 2.47 b 3.69 a 1.36 d 1.04 e 0.97 e 2.43 b 0.79 f
SR40 1.65 e 4.57 a 4.15 b 1.17 f 1.03 g 3.36 c 2.11 d 0.86 h
RS29 0.97 e 6.13 a 5.97 a 1.08 d 1.02 d 3.14 b 2.31 c 0.23 f
RS33 1.24 c 0.57 g 0.68 f 2.72 a 1.04 d 0.72 e 0.42 h 1.35 b
SCL25 3.12 b 4.74 a 2.07 d 1.45 e 1.03 g 2.42 c 1.23 f 0.35 h
SCL26 0.76 g 5.13 a 0.95 f 2.41 c 1.01 f 4.56 b 1.24 e 1.38 d
SCL30 0.96 e 0.69 f 2.31 c 2.76 b 1.04 e 1.21 d 4.32 a 4.14 a
SCL57 0.95 e 4.39 a 1.71 c 1.89 c 1.03 d 2.38 b 2.52 b 0.83 f
RS2Z21 5.49 b 10.74 a 9.85 a 1.72 e 1.02 e 5.16 c 3.14 d 0.51 f
RS2Z36 1.89 e 2.19 d 1.97 e 4.27 a 1.01 f 2.37 c 0.96 f 3.87 b
RS2Z38 0.86 e 4.12 a 3.93 b 0.36 f 1.04 d 3.82 b 1.55 c 1.48 c

图1

PC和WT各指标相关性 A: PC各指标相关性; B: WT各指标相关性。* P < 0.05; ** P < 0.01。RWC: 相对含水量; Su: 可溶性糖; Sp: 可溶性蛋白; Suc: 蔗糖; Glu: 葡萄糖; Fru: 果糖。"

[1] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59:1-6.
doi: 10.1007/s11103-005-2159-5
[2] Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci, 2015, 6:84.
[3] Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets: towards successful genetic engineering of drought- tolerant crops. Mol Plant, 2010, 3:469-490.
doi: 10.1093/mp/ssq016
[4] Li J J, Li Y, Yin Z G, Jiang J H, Zhang M H, Guo X, Ye Z J, Zhao Y, Xiong H Y, Zhang Z Y, Shao Y J, Jiang C H, Zhang H L, An G, Paek N, Ali J, Li Z C. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signaling in rice. Plant Biotechnol J, 2017, 15:183-196.
doi: 10.1111/pbi.2017.15.issue-2
[5] Valliyodan B, Nguyen H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol, 2006, 9:189-195.
pmid: 16483835
[6] Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol, 2010, 61:235-261.
doi: 10.1146/annurev-arplant-042809-112206
[7] Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17:76-80.
pmid: 9920274
[8] 吴琼, 许为钢, 李艳, 齐学礼, 胡琳, 张磊, 韩琳琳. 田间条件下转玉米C4PEPC基因小麦的光合生理特性. 作物学报, 2010, 37:2046-2052.
Wu Q, Xu W G, Li Y, Qi X L, Hu L, Zhang L, Han L L. Physiological characteristics of photosynthesis in transgenic wheat with maize C4-PEPC gene under field conditions. Acta Agron Sin, 2010, 37:2046-2052 (in Chinese with English abstract).
[9] Lian L, Wang X, Zhu Y, He W, Cai Q H, Xie H A, Zhang M Q, Zhang J F. Physiological and photosynthetic characteristics of indica Hang2 expressing the sugarcane PEPC gene. Mol Biol Rep, 2014, 41:2189-2197.
doi: 10.1007/s11033-014-3070-4
[10] Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Miyao M, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci, 2007, 172:1204-1209.
doi: 10.1016/j.plantsci.2007.02.016
[11] 方立锋, 丁在松, 赵明. 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008, 34:1220-1226.
Fang L F, Ding Z S, Zhao M. Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008, 34:1220-1226 (in Chinese with English abstract).
[12] 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用. 作物学报, 2011, 37:112-118
Zhou B Y, Ding Z S, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice. Acta Agron Sin, 2011, 37:112-118 (in Chinese with English abstract).
[13] 丁在松, 周宝元, 孙雪芳, 赵明. 干旱胁迫下PEPC过表达增强水稻的耐强光能力. 作物学报, 2012, 38:285-292.
Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress. Acta Agron Sin, 2012, 38:285-292 (in Chinese with English abstract).
[14] Shen W J, Chen G X, Xu J G, Jiang Y, Liu L, Gao Z P, Ma J, Chen X, Chen T H, Lyu C G. Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Photosynthetica, 2015, 53:436-446.
doi: 10.1007/s11099-015-0111-8
[15] Qian B, Li X, Liu X L, Wang M. Improved oxidative tolerance in suspension cultured cells of C4-pepc transgenic rice by H2O2 and Ca2+ under PEG-6000. J Integr Plant Biol, 2015, 57:534-549.
doi: 10.1111/jipb.12283
[16] 李霞, 焦德茂, 戴传超. 转PEPC基因水稻对光氧化逆境的响应. 作物学报, 2005, 27:408-413.
Li X, Jiao D M, Dai C C. Photosynthetic characteristics for rice hybrids with transgenic PEPC parent HPTER-01. Acta Agron Sin, 2005, 27:408-413 (in Chinese with English abstract).
[17] Ren C G, Li X, Liu X L, Wei X D, Dai C C. Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice. Plant Physiol Biochem, 2014, 74:218-229.
doi: 10.1016/j.plaphy.2013.11.011
[18] Liu X L, Li X, Zhang C, Dai C C, Zhou J Y, Ren C G, Zhang J F. Phosphoenolpyruvate carboxylase regulation in C4-PEPC expressing transgenic rice during early responses to drought stress. Physiol Plant, 2017, 159:178-200.
doi: 10.1111/ppl.2017.159.issue-2
[19] Orta D R, Merchant S S, Alric J, Barkan A, Blankenship R E, Bock R, Moore T A. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA, 2015, 112:8529-8536.
doi: 10.1073/pnas.1424031112
[20] O’Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC recent insights into the physiological function and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011, 436:15-34.
doi: 10.1042/BJ20110078
[21] Li X, Wang C, Ren C G. Effects of butanol neomycin and calcium on the photosynthetic characteristics of pepc transgenic rice. Afr J Biotechnol, 2011, 10:17466-17476.
[22] Chen P, Li X, Huo K, Wei X D, Dai C C. Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors. J Plant Physiol, 2014, 171:458-466.
doi: 10.1016/j.jplph.2013.11.006
[23] Huo K, Li X, He Y F, Wei X D, Wang C L, Zhao C F. Exogenous ATP enhance signal response of suspension cells of transgenic rice (Oryza sativa L.) expressing maize C4-pepc encoded phosphoenolpyruvate carboxylase under PEG treatment. Plant Growth Regul, 2017, 82:55-67.
doi: 10.1007/s10725-016-0238-z
[24] Li X, Wang C. Physiological and metabolic changes of transgenic rice plant with increased activity of phosphonolpyruvate carboxylase during flowering stage. Physiol Plant, 2013, 35:1503-1512.
[25] Zhang C, Li X, He Y F, Zhang J F, Yan T, Liu X L. Physiological investigation of C4 phosphoenolpyruvate carboxylase introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. Plant Physiol Biochem, 2017, 115:328-342.
doi: 10.1016/j.plaphy.2017.03.019
[26] 张金飞, 李霞, 何亚飞, 谢寅峰. 外源葡萄糖增强高表达转玉米C4PEPC水稻耐旱性的生理机制. 作物学报, 2018, 44:82-94.
Zhang J F, Li X, He Y F, Xie Y F. Physiological mechanism on drought tolerance enhanced by exogenous glucose in C4-PEPC rice. Acta Agron Sin, 2018, 44:82-94 (in Chinese with English abstract).
[27] He Y F, Xie Y F, Li X, Yang J. Drought tolerance of transgenic rice overexpressing maize C4-PEPC gene related to increased anthocyanin synthesis regulated by sucrose and calcium. Biol Plant, 2020, 64:136-149.
doi: 10.32615/bp.2020.031
[28] 杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报, 2018, 53:581-593.
Du K X, Shen W H, Dong A W. Advances in epigenetic regulation of abiotic stress response in plants. Chin Bull Bot, 2018, 53:581-593 (in Chinese with English abstract).
[29] Syed N H, Kalyna M, Marquez Y, Barta A, Brown J W. Alternative splicing in plants coming of age. Trends Plant Sci, 2012, 17:616-623.
doi: 10.1016/j.tplants.2012.06.001
[30] 宋凝曦, 张晓敬, 陆佳岚, 李霞, 谢寅峰. 可变剪接在植物响应胁迫中的作用. 植物生理学报, 2020, 56:1201-1211.
Song N X, Zhang X J, Lu J L, Li X, Xie Y F. Function of alternative splicing in plant response to biotic and abiotic stress. Plant Physiol J, 2020, 56:1201-1211 (in Chinese with English abstract).
[31] Wang P, Xue L, Batelli G, Lee S, Hou Y J, Van Oosten M J, Zhang H, Tao W A, Zhu J K. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci USA, 2013, 110:11205-11210.
doi: 10.1073/pnas.1308974110
[32] Ling Y, Alshareef S, Butt H, Lozano J, Li L, Galal A A, Moustafa A, Momin A A, Tashkandi M, Richardson D N, Fujii H, Arold S, Rodriguez P L, Duque P, Mahfouz M M. Pre mRNA splicing repression triggers abiotic stress signaling in plants. Plant J, 2017, 89:291-309.
doi: 10.1111/tpj.13383
[33] Galit L M, Ahuvi Y, Gil A. The alternative role of DNA methylation in splicing regulation. Trends Genet, 2015, 31:274-280.
doi: 10.1016/j.tig.2015.03.002 pmid: 25837375
[34] Yoshida S, Forno D A, Cock J H. Laboratory Manual for Physiological Studies of Rice. Philippines: International Rice Research Institute, 1976. pp 61-64.
[35] Smart R E, Bingham G E. Rapid estimates of relative water content. Plant Physiol, 1974, 53:258-260.
pmid: 16658686
[36] Somani B L, Khanade J, Sinha R. A modified anthrone sulfuric acid method for the determination of fructose in the presence of certain proteins. Anal Biochem, 1987, 167:327-330.
pmid: 3442328
[37] Ambavaram M M, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun, 2014, 5:93.
[38] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 1976, 72:248-254.
pmid: 942051
[39] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1997, 59:309-314.
doi: 10.1104/pp.59.2.309
[40] Smith F G, Robinson W B, Stotz E. A colorimetric method for the determination of peroxidase in plant material. J Biol Chem, 1949, 79:881-889.
[41] Havir E A, McHale N A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol, 1987, 84:450-455.
pmid: 16665461
[42] Walter T, John L. A photometric methods for the determination of proline. J Biol Chem, 1955, 215:655-660.
doi: 10.1016/S0021-9258(18)65988-5
[43] Wang X, Cai J, Jiang D. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J Plant Physiol, 2011, 168:585-593.
doi: 10.1016/j.jplph.2010.09.016
[44] Doulis A G, Debian N, Kingston-Smith A H, Foyer C H. Differential localization of antioxidants in maize leaves. Plant Physiol, 1997, 114:1031-1037.
pmid: 12223757
[45] Yang C Q, Liu W N, Zhao Z H, Wu H Y. Determination of the content of serum calcium with methylthymol blue as chromogenic reagent. Spectrosc Spectr Anal, 1998, 18:485-487.
[46] Murphy M E, Noack E. Nitic oxide assay using hemoglobin method. Methods Enzymol, 1994, 233:240-250.
[47] Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H L, Ali J, Li Z C. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One, 2014, 9:e92913.
doi: 10.1371/journal.pone.0092913
[48] Jung H, Kim J K, Ha S W. Use of animal viral IRES sequence makes multiple truncated transcripts without mediating polycistronic expression in rice. J Korean Soc Biol Chem, 2011, 54:678-684.
[49] Ermakova M, Danila F R, Furbank R T, Caemmerer S. On the road to C4 rice: advances and perspectives. Plant J, 2020, 101:940-950.
doi: 10.1111/tpj.14562
[50] 严婷, 李佳馨, 李霞, 谢寅峰. 转C4PEPC基因水稻非生物胁迫耐受性研究进展. 淮阴工学院学报, 2019, 28:62-68.
Yan T, Li J X, Li X, Xie Y F. Research progress on abiotic stress tolerance of transgenic rice with C4-PEPC gene. J Huaiyin Inst Technol, 2019, 28:62-68 (in Chinese with English abstract).
[51] 何亚飞, 李霞, 谢寅峰. 植物中糖信号及其对逆境调控的研究进展. 植物生理学报, 2016, 52:241-249.
He Y F, Li X, Xie Y F. Research progress in sugar signal and its regulation of stress in plants. Plant Physiol J, 2016, 52:241-249 (in Chinese with English abstract).
[52] 张金飞, 李霞, 谢寅峰. 植物SnRKs家族在胁迫信号通路中的调节作用. 植物学报, 2017, 52:346-357.
doi: 10.11983/CBB16095
Zhang J F, Li X, Xie Y F. The function of sucrose nonfermenting-1 related protein kinases in stress signaling. Chin Bull Bot, 2017, 52:346-357 (in Chinese with English abstract).
[53] Carvalho R F, Szakonyi D, Simpson C G, Barbosa I C R, Browm J W S, Baena-González E, Duque P. The Arabidopsis SR45 splicing factor, a negative regulator of sugar signaling, modulates SNF1-related protein kinase 1 stability. Plant Cell, 2016, 28:1910-1925.
doi: 10.1105/tpc.16.00301
[54] Sah S K, Reddy K R, Li J X. Abscisic acid and abiotic stress tolerance in crop plant. Front Plant Sci, 2016, 7:571.
[55] 刘小龙, 李霞, 钱宝云, 唐玉婷. 植物体内钙信号及其在调节干旱胁迫中的作用. 西北植物学报, 2014, 34:1927-1936.
Liu X L, Li X, Qian B Y, Tang Y T. Ca2+ signal transduction and its regulation role under drought stress in plant. Bot Boreali-Occident Sin, 2014, 34:1927-1936 (in Chinese with English abstract).
[56] 刘小龙, 李霞, 钱宝云. 外源Ca2+对PEG处理下转C4型PEPC基因水稻光合生理的调节. 植物学报, 2015, 50:206-216.
Liu X L, Li X, Qian B Y. Photosynthetic and physiological regulation of C4 phosphoenolpyruvate carboxylase transgenic rice (Oryza sativa) by exogenous Ca2+ under polyethylene glycol stress. Chin Bull Bot, 2015, 50:206-216 (in Chinese with English abstract).
[57] Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14:165-183.
doi: 10.1105/tpc.010278
[58] Palusa S G, Ali G S, Reddy A S. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine rich proteins: regulation by hormones and stresses. Plant J, 2007, 49:1091-1107.
doi: 10.1111/tpj.2007.49.issue-6
[59] Wang Y, Zhou D, Wang S, Yang L. Large scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana. Genet Mol Res, 2015, 14:7793-7800.
doi: 10.4238/2015.July.14.5 pmid: 26214460
[60] Golisz A, Sikorski P J, Kruszka K, Kufel J. Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation. Nucleic Acids Res, 2013, 41:6232-6249.
doi: 10.1093/nar/gkt296 pmid: 23620288
[61] Zhang P, Deng H, Xiao F, Liu Y S. Alterations of alternative splicing patterns of Ser/Arg-Rich (SR) genes in response to hormones and stresses treatments in different ecotypes of rice. J Integr Agric, 2013, 12:737-748.
doi: 10.1016/S2095-3119(13)60260-9
[62] Cruz T M, Carvalho R F, Richardson D N, Duque P. Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression. Int J Mol Sci, 2014, 15:17541-17564.
doi: 10.3390/ijms151017541
[63] Barta A, Kalyna M, Reddy A S. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. Plant Cell, 2010, 22:2926-2929.
doi: 10.1105/tpc.110.078352
[64] Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over expressing C4-PEPC. Biochimie, 2002, 84:1127-1135.
pmid: 12595141
[65] Marsh J T, Sullivan S, Hartwell J, Nimmo H G. Structure and expression of phosphoenolpyruvate carboxylase kinase genes in Solanaceae. A novel gene exhibits alternative splicing. Plant Physiol, 2003, 133:2021-2028.
doi: 10.1104/pp.103.030775
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[10] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[11] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[12] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[13] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[14] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[15] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!