作物学报 ›› 2021, Vol. 47 ›› Issue (4): 650-659.doi: 10.3724/SP.J.1006.2021.04136
张春1,2(), 赵小珍1,2, 庞承珂1,2, 彭门路1,2, 王晓东2, 陈锋2, 张维2, 陈松2, 彭琦2, 易斌3, 孙程明2,3,*(), 张洁夫2,*(), 傅廷栋3
ZHANG Chun1,2(), ZHAO Xiao-Zhen1,2, PANG Cheng-Ke1,2, PENG Men-Lu1,2, WANG Xiao-Dong2, CHEN Feng2, ZHANG Wei2, CHEN Song2, PENG Qi2, YI Bin3, SUN Cheng-Ming2,3,*(), ZHANG Jie-Fu2,*(), FU Ting-Dong3
摘要:
千粒重是油菜产量构成的重要因素之一。本研究利用高通量SNP芯片对496份具有代表性的油菜种质资源进行基因型分析, 考察群体在3个环境(14NJ、15TZ、16TZ)中的千粒重表型, 利用混合线性模型(mixed linear model, MLM)和一般线性模型(general linear model, GLM)进行全基因组关联分析。结果表明, 本群体在3个环境中千粒重的广义遗传力为63.12%。MLM模型检测到6个显著位点, 解释28.92%的表型变异; GLM模型检测到61个显著位点, 解释47.08%的表型变异。合并共同位点后得到62个显著位点, 联合解释47.31%的表型变异。这些位点分布在基因组所有染色体上, 在A07、A03和C06染色体上分别检测到数目最多的9、8和7个位点。其中效应最大的位点Bn-scaff_17526_1-p1066214位于C09染色体, 在MLM和GLM模型中表型贡献值分别为5.55%和15.26%。21个位点与前人报道的QTL重叠, 其中8个位点得到至少2个群体的验证。其余41个位点为新鉴定的位点, 其中多个位点效应高且在多环境中被检测到, 如位点Bn-A03-p560769、Bn-scaff_15743_1-p599416和Bn-scaff_15743_1-p590955等。在11个位点附近找到DGAT、EOD3、AGL61、WRI1、DA2、RAV1等拟南芥已报道千粒重基因的同源基因。本研究结果有助于解析甘蓝型油菜千粒重的遗传基础, 为研究千粒重的调控机制、指导千粒重的遗传改良奠定基础。
[1] | 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302. |
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract). | |
[2] | 易斌, 陈伟, 马朝芝, 傅廷栋, 涂金星. 甘蓝型油菜产量及相关性状的QTL分析. 作物学报, 2006,32:676-682. |
Yi B, Chen W, Ma C Z, Fu T D, Tu J X. Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin, 2006,32:676-682 (in Chinese with English abstract). | |
[3] | Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res, 2006,119:37-42. |
[4] |
Breuninger H, Lenhard M. Control of tissue and organ growth in plants. Curr Top Dev Biol, 2010,91:185.
doi: 10.1016/S0070-2153(10)91007-7 pmid: 20705183 |
[5] | 朱军, 许馥华. 胚乳性状的遗传模型及其分析方法. 作物学报, 1994,20:264-270. |
Zhu J, Xu F H. A genetic model and analysis methods for endosperm traits. Acta Agron Sin, 1994,20:264-270 (in Chinese with English abstract). | |
[6] | 李娜. 甘蓝型油菜粒重母体调控机理解析. 中国农业科学院博士学位论文, 北京, 2015. |
Li N. Maternal Control of Seed Weight in Rapeseed (Brassica napus L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[7] | Jofuku K D, Pamela K, Omidyar Z G. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA, 2005,102:3117-3122. |
[8] | Li Y H, Zheng L Y, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev, 2008,22:1331-1336. |
[9] | Tian X, Li N, Jack D, Li J, Andrei K, Bevan M W, Gao F, Li Y H. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell, 2013,25:3347-3359. |
[10] | Li S, Liu Y, Zheng L, Chen L, Li N, Corke F, Lu Y, Fu X, Zhu Z, Bevan M W, Li Y H. The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana. New Phytol, 2012,194:690-703. |
[11] | Song X J. Crop seed size: BR matters. Mol Plant, 2017,10:668-669. |
[12] |
Fang W J, Wang Z B, Cui R F, Li J, Li Y H. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant J, 2012,70:929-939.
pmid: 22251317 |
[13] | Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed ( Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet, 2006,113:549-561. |
[14] | Basunanda P, Radoev M, Ecke W, Friedt W, Becker H, Snowdon R. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape ( Brassica napus L.). Theor Appl Genet, 2010,120:271-281. |
[15] | Yang P, Shu C, Chen L, Xu J S, Wu J S, Liu K D. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012,125:285-296. |
[16] | Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M. Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7:17. |
[17] |
Fan C C, Cai G Q, Qin J, Li Q Y, Yang M G, Wu J, Zhou Y M. Mapping of quantitative trait loci and development of allele- specific markers for seed weight in Brassica napus. Theor Appl Genet, 2019,121:1289-1301.
pmid: 20574694 |
[18] | Sun L J, Wang X D, Yu K J, Li W J, Peng Q, Chen F, Zhang W, Fu S X, Xiong D Q, Chu P, Guan R Z, Zhang J F. Mapping of QTLs controlling seed weight and seed-shape traits in Brassica napus L. using a high-density SNP map. Euphytica, 2018,214:UNSP 228. |
[19] |
Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015,112:5123-5132.
doi: 10.1073/pnas.1423244112 pmid: 25838284 |
[20] | Shi L L, Song J R, Guo C C, Wang B, Guan Z L, Yang P, Chen X, Zhang Q H, Graham J K, Wang J, Liu K D. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J, 2019,98:524-539. |
[21] | Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Zhang J F, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B. Genome-wide association study provides insight into the genetic control of plant height in rapeseed ( Brassica napus L.). Front Plant Sci, 2016,7:1102. |
[22] |
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154.
pmid: 30858362 |
[23] | 孙程明, 陈锋, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析. 作物学报, 2020,46:147-153. |
Sun C M, Chen F, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of seed number per silique in rapeseed ( Brassica napus L.). Acta Agron Sin, 2020,46:147-153 (in Chinese with English abstract). | |
[24] | Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comp Graph Stat, 1996,5:299-314. |
[25] | Merk H L, Yarnes S C, Van Deynze A, Tong N, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M. Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci, 2012,13:427-437. |
[26] | 孙程明, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜角果长度性状的全基因组关联分析. 作物学报, 2019,45:1303-1310. |
Sun C M, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of silique length in rapeseed ( Brassica napus L.). Acta Agron Sin, 2019,45:1303-1310 (in Chinese with English abstract). | |
[27] | Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005,14:2611-2620. |
[28] | Hardy O J, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002,2:618-620. |
[29] | Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635. |
[30] | Dong H L, Tan C D, Li Y Z, He Y, Wei S, Cui Y X, Chen Y G, Wei D Y, Fu Y, He Y G, Wan H F, Liu H, Xiong Q, Lu K, Li J N, Qian W. Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci, 2018,9:921. |
[31] | Cai D F, Xiao Y J, Yang W, Ye W, Wang B, Muhammad Y, Wu J S, Liu K D. Association mapping of six yield-related traits in rapeseed ( Brassica napus L.). Thero Appl Genet, 2014,127:85-96. |
[32] | Shahid U K, Jiao Y M, Liu S, Zhang K P, Muhammad H U K, Zhai Y G, Amoo O, Fan C C, Zhou Y M. Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Ind Crops Prod, 2019,142:UNSP111877. |
[33] |
Li F, Chen B, Xu K, Wu J, Wu X. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed ( Brassica napus L.). DNA Res, 2014,21:355-367.
pmid: 24510440 |
[34] |
Atwell S, Huang Y S, Vilhjálmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, Meaux J, Ecker J R, Faure N, Kniskern J M, Jones J D, Michael T, Nemri A, Roux F, Salt D E, Tang C, Todesco M, TrawM B, Weigel D, Marjoram P, Borevitz J O, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature, 2010,465:627-631.
doi: 10.1038/nature08800 pmid: 20336072 |
[35] |
Luo Z L, Wang M, Long Y, Huang Y J, Shi L, Zhang C Y, Liu X, Bruce D L F, Xiang J X, Mason A S, Snowdon R J, Liu P F, Meng J L, Zou J. Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet, 2017,130:1569-1585.
pmid: 28455767 |
[36] |
Shi J Q, Li R Y, Qiu D, Jiang C C, Long Y, Morgan C. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009,182:851-861.
pmid: 19414564 |
[37] |
Li N, Shi J Q, Wang X H, Liu G H, Wang H Z. A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol, 2014,14:114.
pmid: 24779415 |
[38] | Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Xiang J, Gan J. Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7:17. |
[39] |
Jako C, Kumar A, Wei Y, Zou J, Barton D L, Giblin E M, Covello P S, Taylor D C. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol, 2001,126:861-874.
doi: 10.1104/pp.126.2.861 pmid: 11402213 |
[40] |
Johnson C S, Ben K, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 2002,14:1359-1375.
doi: 10.1105/tpc.001404 pmid: 12084832 |
[41] | Steffen J G, Kang I, Portereiko M F, Lloyd A, Drews G N. AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol, 2008,148:259-268. |
[42] |
An D, Suh M C. Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa. Plant Biotechnol Rep, 2015,9:137-148.
doi: 10.1007/s11816-015-0351-x |
[43] |
Hyun-Young S, Hee N K. RAV1 negatively regulates seed development by directly repressing MINI3 and IKU2 in Arabidopsis. Mol Cells, 2018,41:1072-1080.
pmid: 30518173 |
[44] |
Cai G Q, Fan C C, Liu S, Yang Q Y, Liu D, Wu J, Li J W, Zhou Y M, Guo L, Wang X M. Nonspecific phospholipase C6 increases seed oil production in oilseed Brassica ceae plants. New Phytol, 2020,226:1055-1073.
doi: 10.1111/nph.16473 pmid: 32176333 |
[45] |
Yang Y, Zhu K Y, Li H L, Han S Q, Meng Q W, Shahid U K, Fan C C, Xie K B, Zhou Y M. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J, 2018,16:1322-1335.
doi: 10.1111/pbi.12872 pmid: 29250878 |
[46] |
Liu J, Hua W, Yang H, Li Z, Han Z. TheBnGRF2 gene(GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot, 2012,63:3727-3740.
doi: 10.1093/jxb/ers066 |
[47] |
Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008,18:1199-1209.
doi: 10.1038/cr.2008.307 pmid: 19015668 |
[48] |
Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell, 2009,21:106-117.
doi: 10.1105/tpc.108.064972 pmid: 19141706 |
[49] | Zhai Y G, Cai S G, Hu L M, Yang Y, Amoo O, Fan C C, Zhou Y M. CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L. Thero Appl Genet, 2019,132:2111-2123. |
[50] |
Zheng M, Zhang L, Tang M, Liu J L, Liu H F, Yang H L, Fan S H, Terzaghi W, Wang H Z, Hua W. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol J, 2020,18:644-654.
doi: 10.1111/pbi.13228 pmid: 31373135 |
[51] | 高谢旺, 谭安琪, 胡信畅, 祝孟洋, 阮颖, 刘春林. 利用CRISPR/Cas9技术创制高油酸甘蓝型油菜新种质. 植物遗传资源学报, 2020,21:1002-1008. |
Gao X W, Tan A Q, Hu X C, Zhu M Y, Ruan Y, Liu C L. Creation of new germplasm of high-oleic rapeseed using CRISPR/Cas9. J Plant Genetic Res, 2020,21:1002-1008 (in Chinese with English abstract). |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[7] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[8] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[9] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[10] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[11] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[12] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[13] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[14] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[15] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
|