作物学报 ›› 2021, Vol. 47 ›› Issue (5): 814-826.doi: 10.3724/SP.J.1006.2021.04140
马欢欢(), 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲*()
MA Huan-Huan(), FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling*()
摘要:
MADS-box基因家族作为一类重要的转录因子, 主要参与植物花器官的生长发育。GhMADS7/98具有保守的MADS-box及K结构域, 属于AG亚家族MIKCC型MADS-box基因。通过同源序列比对发现, GhMADS7/98与拟南芥AtAG (AT4G18960)基因的蛋白序列具有64%的同源性。组织表达分析表明, GhMADS7基因在花瓣、花药、柱头和胚珠等花器官组织中均有表达。为进一步研究该基因的功能, 构建了该基因的RNAi干涉载体并转化棉花, 获得了表达量明显下调的转基因株系。表型观察发现, 在干涉植株长度为5~6 mm和7~8 mm的花蕾中出现花瓣发育延缓的表型; 通过对干涉系转基因植株花瓣进行石蜡切片观察发现, 相较于野生型植株, 干涉系植株花瓣中的维管束存在明显的收缩现象; 通过qRT-PCR检测发现, 转基因株系中控制花瓣发育的A、B类基因的表达量出现异常。因此推测GhMADS7在棉花花瓣发育过程中起着重要的作用。
[1] | Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991,353:31-37. |
[2] | Theien G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001,4:75-85. |
[3] | Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S E, Ditta B C, Vergara-Silva F, Yanofsky M F. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J, 2000,24:457-466. |
[4] | Arora R, Agarwal P, Ray S, Singh A K, Singh V P, Tyagi A K, Kapoor S. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007,8:242. |
[5] | Litt A, Irish V F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics, 2003,165:821-33. |
[6] | Svensson M. Evolution of a Family of Plant Genes with Regulatory Functions in Development; Studies on Picea abies and Lycopodium annotinum. PhD Dissertation of Uppsala University, Uppsala, Sweden, 2000. |
[7] | Smaczniak C, Immink R G, Angenent G C, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 2012,139:3081-3098. |
[8] | José D R, Diego L, Martínez-Zapater J M, María José C. Genome-wide analysis of MIKCC-type MADS box genes in grapevine . Plant Physiol, 2009,149:354-369. |
[9] | Dreni L, Kater M M. MADS reloaded: evolution of the AGAMOUS subfamily genes. New Phytol, 2014,201:717-732. |
[10] | Gao Z H, Zhang Y M, Wang S, Zhang Z. Research progress in floral organ identity gene AGAMOUS. Acta Bot Boreali-Occident Sin, 2008,28:638-644. |
[11] | Jack T, Sieburth L, Meyerowitz E. Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers. Plant J, 1997,11:825-839. |
[12] | Liu Z, Zhang D, Liu D, Li F, Lu H. Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). Plant Cell Rep, 2013,32:227-237. |
[13] | Hou J H, Gao Z H, Zhang Z, Chen S M, Ando T, Zhang J Y, Wang X W. Isolation and characterization of an AGAMOUS homologue pmAG from the Japanese Apricot ( Prunus mume Sieb. et Zucc.). Plant Mol Biol Rep, 2011,29:473-480. |
[14] | Junko K, Ko S. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol, 2002,43:130-135. |
[15] | Pnueli L. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell, 1994,6:163-173. |
[16] | Helliwell C A, Wesley S V, Wielopolska A J, Waterhouse P M. High-throughput vectors for efficient gene silencing in plants. Funct Plant Biol, 2002,29:1217-1225. |
[17] | Jin S X, Zhang X L, Liang S G, Nie Y C, Guo X P, Huang C. Factors affecting transformation efficiency of embryogenic callus of Upland cotton ( Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult, 2005,81:229-237. |
[18] | Min L, Zhu L F, Tu L L, Deng F L, Yuan D J, Zhang X L. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J, 2013,75:823-835. |
[19] | Ding Y H, Ma Y Z, Liu N, Xu J, Hu Q, Li Y Y, Xie S, Zhu L F, Min L, Zhang X L. microRNAs involved in auxin signalling modulate male sterility under high temperature stress in cotton ( Gossypium hirsutum). Plant J, 2017,91:977-994. |
[20] | Becker A, Winter K U, Meyer B, Saedler H, Theissen G. MADS-Box gene diversity in seed plants 300 million years ago. Mol Biol Evol, 2000,17:1425-1434. |
[21] | Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Christopher A S, Brian E S, David M S, Amanda M H K, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Ryan C K, Chen X Y, Elizabeth D, Danny J L, Daniel G P, Peggy T, Don C J, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton ( Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537. |
[22] | Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 1992,71:119-131. |
[23] | 靳春梅, 周坤, 张今今. 茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究. 植物科学学报, 2017,35(1):79-86. |
Jin C M, Zhou K, Zhang J J. Interactions of MADS-box transcription factors CsGLO1, CsGLO2 and CsAG in Camellia sinensis flower development. Plant Sci J, 2017,35(1):79-86 (in Chinese with English abstract). | |
[24] | 田亚然, 范天刚, 张钢, 李永红. 低温引起月季花朵过度重瓣化关键基因的表达及分析. 热带作物学报, 2016,37:1147-1154. |
Tian Y R, Fan T G, Zhang G, Li Y H. Expression and analysis of key genes of excessive double flowers in rose caused by low temperature. Chin J Trop Crops, 2016,37:1147-1154 (in Chinese with English abstract). | |
[25] | 陈之琳, 秦波, 蔡明, 郑唐春, 潘会堂, 王国熙, 潘隆应, 朱嫄, 张启翔. 大花紫薇B类和C类基因克隆及表达模式分析. 见: 张启翔主编. 中国观赏园艺研究进展2017. 北京: 中国林业出版社, 2017. pp 746-756. |
Chen Z L, Qin B, Cai M, Zheng T C, Pan H T, Wang G X, Pan L Y, Zhu Y, Zhang Q X. Cloning and expression pattern analysis of B-function and C-function genes in Lagerstroemia speciosa. In: Zhang Q X, eds. Advances in Ornamental Horticulture of China (2017). Beijing: Chinese Forestry Publishing House, 2017. pp 746-756(in Chinese). | |
[26] | 孙迎坤. 山茶花MADS-box家族A类和C类基因克隆及功能分析. 中国林业科学研究院博士学位论文, 北京, 2013. |
Sun Y K. Isolation and Function Analysis of Class A and C Genes of MADS-box Family from Camellia japonica. PhD Dissertation of Chinese Academy of Forestry, Beijing, China, 2013 (in Chinese with English abstract). | |
[27] | Narumi T, Aida R, Niki T, Nishijima T, Mitsuda N, Hiratsu K, Ohme-Takagi M, Ohtsubo N. Chimeric AGAMOUS repressor induces serrated petal phenotype in Torenia fournieri similar to that induced by cytokinin application. Jpn Soc Plant Cell Mol Biol, 2008,25:45-53. |
[28] | Guo Y L, Zhu Q L, Zheng S Y, Li M Y. Cloning of a MADS box gene ( GhMADS3) from cotton and analysis of its homeotic role in transgenic tobacco. J Genet Genomics, 2007,34:527-535. |
[29] | Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2006,18:15-28. |
[30] | Yun D P, Liang W Q, Dreni L, Yin C S, Zhou Z G, Kater M M, Zhang D B. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Mol Plant, 2013,6:743-756. |
[31] | 段晓姗. 毛茛科C类MADS-Box基因的克隆和表达研究. 陕西师范大学硕士学位论文, 陕西西安, 2011. |
Duan X S. Study on Cloning and Expression of C-type MADS-Box Gene in Ranunculaceae. MS Thesis of Shaanxi Normal University, Xi’an, Shaanxi, China, 2011 (in Chinese with English abstract). | |
[32] | Kramer E M, Jaramillo M A, Stilio V S D. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics, 2004,166:1011-1023. |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[4] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[5] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[6] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[7] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[8] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[9] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[10] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[11] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
[12] | 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521. |
[13] | 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120. |
[14] | 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862. |
[15] | 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052. |
|