欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1680-1689.doi: 10.3724/SP.J.1006.2021.04220

• 研究论文 • 上一篇    下一篇

棉花叶片响应高温的差异与夜间淀粉降解密切相关

赵文青1(), 徐文正1,2, 杨锍琰1, 刘玉1, 周治国1, 王友华1,*()   

  1. 1南京农业大学农学院 / 农业农村部作物生理生态与生产管理重点实验室 / 江苏省现代作物生产协同创新中心JCIC-MCP, 江苏南京 210095
    2河南省农业科学院烟草研究所, 河南许昌 461000
  • 收稿日期:2020-09-27 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-03-01
  • 通讯作者: 王友华
  • 作者简介:E-mail: zhaowenqing@njau.edu.cn
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000900);江苏省现代作物生产协同创新中心项目(JCIC-MCP)

Different response of cotton leaves to heat stress is closely related to the night starch degradation

ZHAO Wen-Qing1(), XU Wen-Zheng1,2, YANG Liu-Yan1, LIU Yu1, ZHOU Zhi-Guo1, WANG You-Hua1,*()   

  1. 1College of Agriculture, Nanjing Agricultural University / Key Laboratory of Crop Ecophysiology and Management, Ministry of Agriculture and Rural Affairs / Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing 210095, Jiangsu, China
    2Institute of Tobacco Research, Henan Academy of Agricultural Sciences, Xuchang 461000, Henan, China
  • Received:2020-09-27 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-03-01
  • Contact: WANG You-Hua
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Jiangsu Collaborative Innovation Center for Modern Crop Production(JCIC-MCP)

摘要:

叶片对光合产物的转运输出是其源能力的重要体现, 高温胁迫导致的源能力不足是棉花减产降质的重要原因之一。为探究棉花对位叶光合产物输出能力对短期高温胁迫的响应及其在不同热敏感性品种间的差异, 本研究以耐热型棉花品种PHY370WR和热敏感型棉花品种苏棉15为材料, 于2015—2016年在南京农业大学牌楼试验站进行盆栽试验, 在棉花花铃期设置持续5 d的温度处理[对照日均温为26℃ (CK, 昼夜温度循环为30/22℃), 高温处理日均温为34℃ (HT, 昼夜温度循环为38/30℃)], 在高温胁迫5 d和胁迫解除后5 d对叶片光合产物输出能力和光合产物含量进行研究。结果表明, 高温胁迫5 d显著降低棉花铃重, 提高对位叶比叶重, 耐热型棉花品种PHY370WR铃重降低幅度及比叶重升高幅度均较热敏感型棉花品种苏棉15低。13C标记光合产物的结果表明, 高温5 d显著降低棉花叶片光合产物的输出效率, 与CK相比, 苏棉15的降幅为22.1%, 下降斜率为-2.48, 显著高于PHY370WR的降幅15.7%和下降斜率-1.82; 恢复5 d后棉花叶片光合产物输出效率降低幅度变小, 但品种间差异由高温5 d时的6.4%增加为胁迫解除后5 d的10.2%, 且苏棉15的恢复斜率仅为0.44, 远小于PHY370WR的0.89。此外, 与高温5 d时相比, 恢复5 d后蔗糖含量日变化幅度的品种间差异减小, 而淀粉含量日变化幅度品种间差异表现为增大, 与碳水化合物输出效率的趋势一致, 相关性分析亦表明, 高温胁迫5 d及恢复5 d时淀粉含量日变化幅度与碳水化合物输出效率相关性更显著。通过大田试验和盆栽试验确定淀粉最大、最小含量出现时间, 在此基础上进一步分析发现, 在高温胁迫5 d及胁迫恢复后5 d, 淀粉日最小(夜间)含量升高幅度品种间差异较日最大(白天)含量降低幅度更为显著, 且恢复后5 d时品种间差异较高温5 d时显著增大。综上, 热敏感性差异的棉花叶片碳水化合物输出效率对高温胁迫响应的差异不仅表现在胁迫发生时, 更表现在胁迫解除后; 耐热型棉花品种PHY370WR的叶片在高温胁迫发生时及胁迫恢复后表现出更强的抵御高温逆境能力及更好的恢复能力, 与其夜间淀粉降解能力即叶片最小(夜间)淀粉含量增加幅度较小密切相关。

关键词: 棉花(Gossypium hirsutum L.), 高温胁迫, 对位叶, 碳水化合物转运

Abstract:

The export rate of photosynthetic products from leaves is an important manifestation of their source capacity. Heat induced source capacity shortage is one of the major reasons for cotton yield reduction and quality deterioration. To explore the difference and mechanism of leaf carbohydrate export in response to short-term heat stress between cotton cultivars with different heat sensitivity, pot experiments were carried out using two cotton cultivars PHY370WR (heat tolerance) and Sumian 15 (heat sensitivity) as experimental materials in 2015 and 2016. Two temperature treatment (CK, average temperature 26℃; HT, average temperature 34℃) was conducted at flowering and boll forming stages lasting for five days. Results showed that cotton boll weight was significantly decreased and specific leaf weight was increased by HT. The reduction of boll weight and increase of specific leaf weight of PHY370WR were lower than that of Sumian 15. The results of 13C labeled photosynthetic products showed that the carbohydrate export efficiency (CEE) of cotton leaves was significantly reduced by HT. Compared with CK, the decrease rate of CEE in Sumian 15 was 22.1% and the decline slope was -2.48, significantly higher than that of PHY370WR by 15.7% and -1.82, respectively. The decrease after five days of recovery in CEE diminished, but the differences at five days of HT between varieties were increased from 6.4% to 10.2% compared with at five days after HT released. The recovery slope of CEE in Sumian 15 was only 0.44, far less than 0.89 of PHY370WR. In addition, compared with HT, the difference of daily variation amplitude of sucrose content was decreased and the difference of daily variation amplitude of starch content was increased between cultivars after five days recovery. The latter was consistent with the trend of CEE in response to HT. Correlation analysis revealed that starch content of daily variation amplitude was more significantly correlated with CEE than sucrose. Further analysis showed that at both five days of HT and five days after HT released, the difference of increase in the minimum (night) starch content between cultivars was more significant than that of decrease in the maximum (day) starch content. The differences between cultivars at five days after HT released were significantly larger than that at five days of HT. In conclusion, there were the differences of cotton leaf CEE with different heat sensitivities not only during high temperature stress but also after the relief of stress. The heat tolerant cultivar PHY370WR indicated stronger resistance to HT and better recovery ability after HT released, which was closely related to a better starch degradation ability with a less increase in the minimum starch content in leaves at night.

Key words: cotton (Gossypium hirsutum L.), heat stress, subtending leaf, carbohydrates transportation

图1

高温胁迫对棉花铃重及其比叶重的影响 在收获期调查了20个非取样棉花植物, 对标记部位棉铃铃重和对位叶叶片比叶重进行统计分析。图中大小写字母分别表示品种间达到极显著(P < 0.01)或显著( P < 0.05)差异。 "

图2

高温胁迫下及胁迫解除后5 d叶片碳水化合物输出能力的变化及其在品种间的差异 k1和k3分别表示高温胁迫下PHY370WR与苏棉15碳水化合物输出效率的下降斜率; k2和k4分别表示高温胁迫解除后PHY370WR与苏棉15碳水化合物输出效率的恢复斜率。 "

图3

棉花叶片中蔗糖、淀粉含量的日变化规律 图A为大田栽培条件下叶片中蔗糖和淀粉含量的日变化, 每1 h取样1次。图B为盆栽试验条件下的叶片中蔗糖和淀粉含量的日变化情况, 每3 h取样1次。"

图4

高温胁迫对棉花叶片中淀粉、蔗糖含量日变化幅度的影响 CK: 常温对照, 平均日均温26℃; HT: 高温胁迫, 平均日均温34℃。"

图5

高温胁迫5 d及恢复5 d时棉铃对位叶蔗糖、淀粉含量日变化幅度与碳水化合物输出效率的相关性 用同位素13C标记结果计算所得的碳水化合物输出效率与叶片中淀粉含量和蔗糖含量的日最大变化幅度进行相关性分析, 对应色块的颜色越深表明相关性越强。**表示1%显著水平。 "

图6

不同热敏感性品种棉铃对位叶淀粉昼夜极值响应高温胁迫的差异 纵轴为PHY370WR叶片中日最大/最小淀粉含量的变化幅度, 横轴为苏棉15叶片中日最大/最小淀粉含量的变化幅度, 图中点的分布距离斜线越远, 表示品种间差异越大。叶片中日最大/最小淀粉含量变化幅度 = (高温胁迫处理叶片日最大/最小淀粉含量 - 对照叶片日最大/最小淀粉含量)/(对照叶片日最大/最小淀粉含量)。"

[1] 王友华, 束红梅, 陈兵林, 许乃银, 赵永仓, 周治国. 不同棉花品种纤维比强度形成的时空差异及其与温度的关系. 中国农业科学, 2008, 41:3865-3871.
Wang Y H, Shu H M, Chen B L, Xu N Y, Zhao Y C, Zhou Z G. Temporal-spatial bariation of cotton fiber strength of different cultivars and its relationship with temperature. Sci Agric Sin, 2008, 41:3865-3871 (in Chinese with English abstract).
[2] Dai Y J, Chen B L, Meng Y L, Zhao W Q, Zhou Z G, Oosterhuis D M, Wang Y H. Effects of elevated temperature on sucrose metabolism and cellulose synthesis in cotton fibre during secondary cell wall development. Funct Plant Biol, 2015, 42:909-919.
doi: 10.1071/FP14361
[3] Chen Y, Wang H, Hu W, Wang S, Snider J L, Zhou Z. Co-occurring elevated temperature and waterlogging stresses disrupt cellulose synthesis by altering the expression and activity of carbohydrate balance-associated enzymes during fiber development in cotton. Environ Exp Bot, 2017, 135:106-117.
doi: 10.1016/j.envexpbot.2016.12.012
[4] Snider J L, Oosterhuis D M, Kawakami E M. Mechanisms of reproductive thermotolerance in Gossypium hirsutum: the effect of genotype and exogenous calcium application. J Agron Crop Sci, 2011, 197:228-236.
doi: 10.1111/jac.2011.197.issue-3
[5] 李文丹, 雒珺瑜, 张帅, 吕丽敏, 王春义, 朱香镇, 李春花, 崔金杰. 高温胁迫对棉花内源激素的影响. 中国棉花, 2016, 43(6):14-16.
Li W D, Luo J Y, Zhang S, Lyu L M, Wang C Y, Zhu X Z, Li C H, Cui J J. Influence of heat stress on endogenous hormone of cotton. China Cotton, 2016, 43(6):14-16 (in Chinese with English abstract).
[6] 宋桂成, 王苗苗, 曾斌, 陈全战, 唐灿明. 高温对棉花生殖过程的影响. 核农学报, 2016, 30:404-411.
Song G C, Wang M M, Zeng B, Chen Q Z, Tang C M. The effects of high-temperature on reproductive process in upland cotton. J Nucl Agric Sci, 2016, 30:404-411 (in Chinese with English abstract).
[7] Wullschleger S D, Oosterhuis D M. Photosynthetic carbon production and use by developing cotton leaves and bolls. Crop Sci, 1990, 30:1259-1264.
doi: 10.2135/cropsci1990.0011183X003000060021x
[8] Liu J, Ma Y, Lyu F, Chen J, Zhou Z, Wang Y, Abudurezike A, Oosterhuis D M. Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting. Field Crops Res, 2013, 144:200-211.
doi: 10.1016/j.fcr.2013.02.003
[9] Lunn J E, Hatch M D. Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C4 plants. Planta, 1995, 197:385-391.
[10] Farrar J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascular plants. Plant Sci, 2000, 154:1-11.
doi: 10.1016/S0168-9452(99)00260-5
[11] Herold A. Regulation of photosynthesis by sink activity: the missing link. New Phytol, 2006, 86:131-144.
doi: 10.1111/nph.1980.86.issue-2
[12] Guy C L, Huber J L A, Huber S C. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol, 1992, 100:502-508.
pmid: 16652990
[13] 熊福生, 高煜珠, 詹勇昌, 李国锋. 植物叶片蔗糖、淀粉积累与其降解酶活性关系研究. 作物学报, 1994, 20:52-58.
Xiong F S, Gao Y Z, Zhan Y C, Li G F. Relationship between leaf sucrose and starch content and their degradative enzymes activities in crop plants. Acta Agron Sin, 1994, 20:52-58 (in Chinese with English abstract).
[14] Lafta A M, Lorenzen J H. Effects of high temperature on plant grwoth and carbohydrate metabolism in potato. Plant Physiol, 1995, 109:637-643.
pmid: 12228617
[15] Loka D A, Oosterhuis D M. Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content. Environ Exp Bot, 2010, 68:258-263.
doi: 10.1016/j.envexpbot.2010.01.006
[16] Liu X, Huang B. Carbohydrate accumulation in relation to heat stress tolerance in two creeping bentgrass cultivars. J Am Soc Hortic Sci, 2000, 125:153-164.
[17] Hu W, Dai Y, Zhao W, Meng Y, Chen B. Effects of long-term elevation of air temperature on sucrose metabolism in cotton leaves at different positions. J Agron Crop Sci, 2017, 203:539-552.
doi: 10.1111/jac.2017.203.issue-6
[18] Sharkey T D. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ, 2005, 28:269-277.
doi: 10.1111/pce.2005.28.issue-3
[19] Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol, 1980, 31:491-543.
doi: 10.1146/annurev.pp.31.060180.002423
[20] Wells R. Response of leaf ontogeny and photosynthetic activity to reproductive growth in cotton. Plant Physiol, 1988, 87:274-279.
pmid: 16666118
[21] Pettigrew W T. The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci, 2008, 48:278-285.
doi: 10.2135/cropsci2007.05.0261
[22] Snider J L, Oosterhuis D M, Kawakami E M. Genotypic differences in thermotolerance are dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. Physiol Plant, 2010, 138:268-277.
doi: 10.1111/j.1399-3054.2009.01325.x pmid: 20002327
[23] Zahid K R, Ali F, Shah F, Younas M, Shah T, Shahwar D, Hassan W, Ahmad Z, Qi C, Lu Y. Response and tolerance mechanism of cotton Gossypium hirsutum L. to elevated temperature stress: a review. Front Plant Sci, 2016, 7:937-937.
[24] Pettigrew W T. Cultivar variation in cotton photosynthetic performance under different temperature regimes. Photosynthetica, 2016, 54:502-507.
doi: 10.1007/s11099-016-0208-8
[25] 刘贤赵, 宿庆, 李嘉竹, 全斌, 李朝奎, 张勇, 王志强, 王国安. 控温条件下C3、C4草本植物碳同位素组成对温度的响应. 生态学报, 2015, 35:3278-3287.
Liu X Z, Su Q, Li J Z, Quan B, Li C K, Zhang Y, Wang Z Q, Wang G A. Response of carbon isotopic composition of C3 and C4 herbaceous plants to temperature under controlled temperature conditions. Acta Ecol Sin, 2015, 35:3278-3287 (in Chinese with English abstract).
[26] Kanai S, Moghaieb R E A, Elshemy H A, Panigrahi R, Mohapatra P K, Ito J, Nguyen N T, Saneoka H, Fujita K. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci, 2011, 180:368-374.
doi: 10.1016/j.plantsci.2010.10.011
[27] 谷淑波, 代兴龙, 樊广华, 郭启芳. 稳定性同位素13C标记小麦植株δ13C值的检测方法研究. 核农学报, 2016, 30:770-775.
Gu S B, Dai X L, Fan G H, Guo Q F. Study on the determination method of δ 13C values of the stable isotope 13C-labeled wheat plant. J Nucl Agric Sci, 2016, 30:770-775 (in Chinese with English abstract).
[28] Xu W, Zhou Z, Zhan D, Zhao W, Meng Y, Chen B, Liu W, Wang Y. The difference in the formation of thermotolerance of two cotton cultivars with different heat tolerance. Arch Agron Soil Sci, 2019, 66:58-69.
doi: 10.1080/03650340.2019.1593967
[29] Hu W, Yang J, Meng Y, Wang Y, Chen B, Zhao W, Oosterhuis D M, Zhou Z. Potassium application affects carbohydrate metabolism in the leaf subtending the cotton ( Gossypium hirsutum L.) boll and its relationship with boll biomass. Field Crops Res, 2015, 179:120-131.
doi: 10.1016/j.fcr.2015.04.017
[30] 孙红春, 李存东, 张月辰, 路文静. 棉花源库比对中、下部果枝叶生理活性及铃重的影响. 作物学报, 2008, 34:1459-1463.
Sun H C, Li C D, Zhang Y Z, Lu W J. Effects of source/sink ratio on boll weight and physiological activities of leaves at middle and lower fruiting branches in cotton. Acta Agron Sin, 2008, 34:1459-1463 (in Chinese with English abstract).
[31] 陈子元. 不断开创我国同位素示踪技术新体系. 核农学报, 2003, 17:325-327.
Chen Z Y. The exploration of new system of isotope tracing technique in China. J Nucl Agric Sci, 2003, 17:325-327 (in Chinese with English abstract).
[32] Ashley D A. C-labelled photosynthate translocation and utilization in cotton plants. Crop Sci, 1972, 12:69-74.
doi: 10.2135/cropsci1972.0011183X001200010023x
[33] Hendrix D L, Huber S C. Diurnal fluctuations in cotton leaf carbon export, carbohydrate content, and sucrose synthesizing enzymes. Plant Physiol, 1986, 81:584-586.
pmid: 16664860
[34] 龚月桦, 高俊凤. 高等植物光合同化物的运输与分配. 西北植物学报, 1999, 19:564-570.
Gong Y H, Gao J F. Transport and partitioning of photoassimilate in higher plant. Acta Bot Boreali-Occident Sin, 1999, 19:564-570 (in Chinese with English abstract).
[35] Hendrix D L, Grange R I. Carbon partitioning and export from mature cotton leaves. Plant Physiol, 1991, 95:228-233.
pmid: 16667956
[1] 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447.
[2] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[3] 衡丽,李亚兵,胡大鹏,王桂霞,吕春花,张祥,陈源,陈德华. 高温胁迫对Bt棉蕾中杀虫蛋白含量及氮代谢的影响[J]. 作物学报, 2016, 42(09): 1374-1380.
[4] 王亚梁**,张玉屏**,朱德峰*,向镜,武辉,陈惠哲,张义凯. 水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响[J]. 作物学报, 2016, 42(09): 1402-1410.
[5] 江文文,尹燕枰,王振林,李勇,杨卫兵,彭佃亮,杨东清,崔正勇,卢昆丽,李艳霞. 花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响[J]. 作物学报, 2014, 40(05): 942-949.
[6] 张祖建,王晴晴,郎有忠,王春哥,朱庆森,杨建昌. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响[J]. 作物学报, 2014, 40(02): 273-282.
[7] 李枝梅,窦海鸥,卫丹丹,孟庆伟,CHEN Tony Huihuang,杨兴洪. codA基因提高番茄植株的耐热性[J]. 作物学报, 2013, 39(11): 2046-2054.
[8] 赵福成,景立权,闫发宝,陆大雷,王桂跃,陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响[J]. 作物学报, 2013, 39(09): 1644-1651.
[9] 刘敬然,刘佳杰,孟亚利,王友华,陈兵林,张国伟,周治国. 外源6-BA和ABA对不同播种期棉花产量和品质及其棉铃对位叶光合产物的影响[J]. 作物学报, 2013, 39(06): 1078-1088.
[10] 杨卫丽,黄福灯,曹珍珍,雷炳婷,胡东维,程方民. 高温胁迫对水稻光合PSII系统伤害及其与叶绿体D1蛋白间关系[J]. 作物学报, 2013, 39(06): 1060-1068.
[11] 刘光快,曹珍珍,韦克苏,潘刚,苏达,张春娇,程方民. 水稻蛋白二硫键异构酶基因沉默载体构建及其转基因后代的高温结实特性分析[J]. 作物学报, 2013, 39(05): 816-826.
[12] 李余良,刘建华,郑锦荣,胡建广. 高温胁迫下甜玉米雌穗发育基因差异表达谱分析[J]. 作物学报, 2013, 39(02): 269-279.
[13] 孟丽君,马秀芳,唐志强,沈枫,崔彦茹,柴路,陈凯,徐建龙,黎志康. 粳稻超优1号背景回交导入系的耐热性筛选与评价[J]. 作物学报, 2012, 38(11): 1949-1959.
[14] 孙啸震,张黎妮,戴艳娇,贺新颖,周治国,王友华. 花铃期增温对棉花干物重累积的影响及其生理机制[J]. 作物学报, 2012, 38(04): 683-690.
[15] 韦克苏;张其芳;程方民;钟连进;陈能;谢黎红. 花后高温下水稻可溶性淀粉合酶同工型基因的表达模式[J]. 作物学报, 2009, 35(1): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!